A how our planets and moons formed
Answer:
a = g = 9.81[m/s^2]
Explanation:
This problem can be solve using the second law of Newton.
We know that the forces acting over the skydiver are only his weight, and it is equal to the product of the mass by the acceleration.
m*g = m*a
where:
g = gravity = 9.81[m/s^2]
a = acceleration [m/s^2]
Note: If the skydiver will be under air resistance forces his acceleration will be different.
Yes, it is. Physical science<span>, the systematic study of the inorganic world</span>
Answer:
The final velocity of the ball is 7m/s
Explanation:
M1=8kg, V1 =10m/s
, M2=2kg
, V2=-5m/s
initial momentum before collison
m1v1+m2v2
=8×10 +2×(-5) =80-10 = 70kg m/s
final momentum after collison
=(m1+m2)×v
=(8+2)×v
=10v
According to the law of conversion of momentum
initial momentum =final momentum
70=10v
10v=70
v=70/10
v=7m/s
Answer: 11 km/h at 339° compass
Explanation:
A sees B moving south at 0 km/h
A is moving north at 12cos30 = 10.392 km/h
Therefore B must be moving north at 10.392 k/h
A is moving east at 12sin30 = 6 km/h
B appears to be moving west at 10 km/h
Therefore B must be moving west at 10 - 6 = 4 km/h
B is moving v = √(4² + 10.392²) = 11.135... 11 km/h
θ = arctan( -4 / 10.392) = -21.05 = 339°