If both bars are made of a good conductor, then their specific heat capacities must be different. If both are metals, specific heat capacities of different metals can vary by quite a bit, eg, both are in kJ/kgK, Potassium is 0.13, and Lithium is very high at 3.57 - both of these are quite good conductors.
If one of the bars is a good conductor and the other is a good insulator, then, after the surface application of heat, the temperatures at the surfaces are almost bound to be different. This is because the heat will be rapidly conducted into the body of the conducting bar, soon achieving a constant temperature throughout the bar. Whereas, with the insulator, the heat will tend to stay where it's put, heating the bar considerably over that area. As the heat slowly conducts into the bar, it will also start to cool from its surface, because it's so hot, and even if it has the same heat capacity as the other bar, which might be possible, it will eventually reach a lower, steady temperature throughout.
Answer:
1.8 × 10⁻⁸ Hm
Explanation:
Given that:
The refractive index of the film = 19
The wavelength of the light = 136.8 μ m
The thickness can be calculated by using the formula shown below as:
Where, n is the refractive index of the film
is the wavelength
So, thickness is:
Thickness = 1.8 μ m
Since,
1 μ m = 10⁻⁸ Hm
So,
Thickness = 1.8 × 10⁻⁸ Hm
<span>Bones. The most important organ of the skeletal system is the bones.
Ligaments and Joints. Another important component, i.e. the ligaments are made of fibrous collagen tissue that attaches one bone to another bone.
<span>
Cartilage.</span></span>
Answer:
Explanation:
A lava lamp consists of oil, and wax in a glass, and a heat source (a light bulb) placed underneath the glass. When the lamp is turned on the bulb gets hot. As the bulb heats up some of the heat from the bulb is transferred to the glass by radiation.