Build a filter.
Dig water from the ground
Answer:
85.8 m/s
Explanation:
We know that the length of the circular path, L the plane travels is
L = rθ where r = radius of path and θ = angle covered
Now,its speed , v = dL/dt = drθ/dt = rdθ/dt + θdr/dt
where dθ/dt = ω = angular speed = v'/r where v' = maximum speed of plane and r = radius of circular path
Now, from θ = θ₀ + ωt where θ₀ = 0 rad, ω = angular speed and t = time,
θ = θ₀ + ωt = 0 + ωt = ωt
So, v = rdθ/dt + θdr/dt
v = rω + ωtdr/dt
v = (r + tdr/dt)ω
v = (r + tdr/dt)v'/r
v = v' + tv'/r(dr/dt)
v = v'[1 + t(dr/dt)/r]
Given that v' = 110 m/s, t = 33.0s, r = 120 m and dr/dt = rate at which line is shortened = -0.80 m/s (negative since it is decreasing)
So, v = 110 m/s[1 + 33.0 s(-0.80 m/s)/120 m]
v = 110 m/s[1 + 11.0 s(-0.80 m/s)/40 m]
v = 110 m/s[1 + 11.0 s(-0.02/s)]
v = 110 m/s[1 - 0.22]
v = 110 m/s(0.78)
v = 85.8 m/s
From the diagram we have that



Therefore the direction is 30° from east of south
Explanation:
Th electric force between charges is inversely proportional to the square of distance between them. It means,

Initial distance, r₁ = 2 cm
Final distance, r₂ = 0.25 cm
Initial force, F₁ = 1 N
We need to find the electric force between charges if the new separation of 0.25 cm. So,

So, the new force is 64 N if the separation between charges is 64 N.
Here is the full question:
The rotational inertia I of any given body of mass M about any given axis is equal to the rotational inertia of an equivalent hoop about that axis, if the hoop has the same mass M and a radius k given by:

The radius k of the equivalent hoop is called the radius of gyration of the given body. Using this formula, find the radius of gyration of (a) a cylinder of radius 1.20 m, (b) a thin spherical shell of radius 1.20 m, and (c) a solid sphere of radius 1.20 m, all rotating about their central axes.
Answer:
a) 0.85 m
b) 0.98 m
c) 0.76 m
Explanation:
Given that: the radius of gyration
So, moment of rotational inertia (I) of a cylinder about it axis = 





k = 0.8455 m
k ≅ 0.85 m
For the spherical shell of radius
(I) = 




k = 0.9797 m
k ≅ 0.98 m
For the solid sphere of radius
(I) = 




k = 0.7560
k ≅ 0.76 m