<h2>
Distance traveled in 1 second after drop is 4.9 m</h2><h2>
Distance traveled in 4 seconds after drop is 78.4 m</h2>
Explanation:
We have s = ut + 0.5at²
For a free falling object initial velocity u = 0 m/s and acceleration due to gravity, g = 9.8 m/s²
Substituting
s = 0 x t + 0.5 x 9.8 x t²
s = 4.9t²
We need to find distance traveled in 1 s and 4 s
Distance traveled in 1 second
s = 4.9 x 1² = 4.9 m
Distance traveled in 4 seconds
s = 4.9 x 4² = 78.4 m
Distance traveled in 1 second after drop = 4.9 m
Distance traveled in 4 seconds after drop = 78.4 m
Answer:
a =( -0.32 i ^ - 2,697 j ^) m/s²
Explanation:
This problem is an exercise of movement in two dimensions, the best way to solve it is to decompose the terms and work each axis independently.
Break down the speeds in two moments
initial
v₀ₓ = v₀ cos θ
v₀ₓ = 5.25 cos 35.5
v₀ₓ = 4.27 m / s
= v₀ sin θ
= 5.25 sin35.5
= 3.05 m / s
Final
vₓ = 6.03 cos (-56.7)
vₓ = 3.31 m / s
= v₀ sin θ
= 6.03 sin (-56.7)
= -5.04 m / s
Having the speeds and the time, we can use the definition of average acceleration that is the change of speed in the time order
a = (
- v₀) /t
aₓ = (3.31 -4.27)/3
aₓ = -0.32 m/s²
= (-5.04-3.05)/3
= -2.697 m/s²
Answer:
Time, t = 0.015 seconds.
Explanation:
Given the following data;
Mass, m = 0.2kg
Force, F = 200N
Initial velocity, u = 40m/s
Final velocity, v = 25m/s
To find the time;
Ft = m(v - u)
Time, t = m(v - u)/f
Substituting into the equation, we have;
Time, t = 0.2(25 - 40)/200
Time, t = 0.2(-15)/200
Time, t = 3/200
Time, t = 0.015 seconds.
Note: We ignored the negative sign because time can't be negative.
The answer is 21m because the motion is in one dimension with constant acceleration.
The initial velocity is 0, because it started from rest, the acceleration <span>ax</span> is <span>4.7<span>m<span>s2</span></span></span>, and the time t is <span>3.0s</span>
Plugging in our known values, we have
<span>Δx=<span>(0)</span><span>(3.0s)</span>+<span>12</span><span>(4.7<span>m<span>s2</span></span>)</span><span><span>(3.0s)</span>2</span>=<span>21<span>m</span></span></span>