Answer:

![[H^+]=5x10^{-13}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D5x10%5E%7B-13%7DM)
![[OH^-]=0.02M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.02M)
Explanation:
Hello there!
In this case, according to the given ionization of magnesium hydroxide, it is possible for us to set up the following reaction:

Thus, since the ionization occurs at an extent of 1/3, we can set up the following relationship:
![\frac{1}{3} =\frac{x}{[Mg(OH)_2]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B3%7D%20%3D%5Cfrac%7Bx%7D%7B%5BMg%28OH%29_2%5D%7D)
Thus, x for this problem is:
![x=\frac{[Mg(OH)_2]}{3}=\frac{0.03M}{3}\\\\x= 0.01M](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B%5BMg%28OH%29_2%5D%7D%7B3%7D%3D%5Cfrac%7B0.03M%7D%7B3%7D%5C%5C%5C%5Cx%3D%20%200.01M)
Now, according to an ICE table, we have that:
![[OH^-]=2x=2*0.01M=0.02M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D2x%3D2%2A0.01M%3D0.02M)
Therefore, we can calculate the H^+, pH and pOH now:
![[H^+]=\frac{1x10^{-14}}{0.02}=5x10^{-13}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5Cfrac%7B1x10%5E%7B-14%7D%7D%7B0.02%7D%3D5x10%5E%7B-13%7DM)

Best regards!
Answer:
When writing equation the mass on left side of equation must be equal to the mass on right side. True
Explanation:
The chemical reactions always follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
For example:
In photosynthesis reaction:
6CO₂ + 6H₂O + energy → C₆H₁₂O₆ + 6O₂
there are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass because total mass is equal on both side of equation.
Answer:
Option ( 1 )
Explanation:
This atom has a cub close pack structure, and therefore - the number of edge center present in X atoms = 4,
Number of unit cells present in X atoms = 6
____________________________________________________
Now the 6th coordination number of X atom = 6 * 4 = 24,
So respectively, the 3rd coordination number of X = 8 -
And thus the ratio between the 6th coordination number and the 3rd coordination number = 24 / 8 = 3,
Option ( 1 )
<u><em>Hope that helps!</em></u>
To determine whether a compound is polar or nonpolar you have to take into account:
1) formation of dipoles due to the difference in electronegativities of the atoms
2) shape of the molecule to conclude whether there is a net dipole momentum.
You already, likely, know that the electronegativities of H and O are significatively different, being O more electronegative thatn H. So, you can conclude easilty that the electrons are atracted more by O than by H, thus creating two dipoles H→O
Regarding the shape, it may appear that the molecule is symmetrical, which would lead to the cancellation of the two dipoles. But that is not the true. The H2O2 is not symmetrical.
The lewis structure just show this shape
** **
H - O - O - H
** **
which is what may induce to think that the molecule is symmetrical, leading to the misconception that it is nonpolar.
But in a three dimensional arrangement you could see that the hydrogens are placed in non symmetrical positions, which leads to the formation of a net dipole momentum, and thus to a polar molecule.
The fact that H2O2 is a polar compound is the reason why it can be mixed with water and the H2O2 that you buy in the pharmacy is normally a solution in water.
So, the hydrogen peroxide is polar because the hydrogens are not placed symmetrically in the molecule, which result in a net dipole momentum.