Answer:

Explanation:
It is given that, a proton moves at constant velocity, through a region in which there is an electric field and a magnetic field such that,
The electric field is, E = 800 V/m
Magnetic field, B = 0.25 T
We know that the net force in the region of magnetic and electric field is given by Lorentz forces. But here, the proton moves with constant velocity. So, the net force acting on it is 0.
i.e.

Hence, this is the required solution.
Answer:
The refractive index of glass, 
Solution:
Brewster angle is the special case of incident angle that causes the reflected and refracted rays to be perpendicular to each other or that angle of incident which causes the complete polarization of the reflected ray.
To determine the refractive index of glass:
(1)
where
= refractive index of glass
= refractive index of glass
Now, using eqn (1)



Answer:
3.62m/s and 2.83m/s
Explanation:
Apply conservation of momentum
For vertical component,
Pfy = Piy
m* Vof (sin38) - m*Vgf (sin52) = 0
Divide through by m
Vof(sin38) - Vgf(sin52) = 0
Vof(sin38) = Vgf(sin52)
Vof (sin38/sin52) = Vgf
0.7813Vof = Vgf
For horizontal component
Pxf= Pxi
m* Vof (cos38) - m*Vgf (cos52) = m*4.6
Divide through by m
Vof(cos38) + Vgf(cos52) = 4.6
Recall that
0.7813Vof = Vgf
Vof(cos38) + 0.7813 Vof(cos52) = 4.6
0.7880Vof + 0.4810Vof = 4.
1.269Vof = 4.6
Vof = 4.6/1.269
Vof = 3.62m/s
Recall that
0.7813Vof = Vgf
Vgf = 0.7813 * 3.62
Vgf = 2.83m/s