It teacts with OH and makes water and salt
Answer:
10.6 g CO₂
Explanation:
You have not been given a limiting reagent. Therefore, to find the maximum amount of CO₂, you need to convert the masses of both reactants to CO₂. The smaller amount of CO₂ produced will be the accurate amount. This is because that amount is all the corresponding reactant can produce before it runs out.
To find the mass of CO₂, you need to (1) convert grams C₂H₂/O₂ to moles (via molar mass), then (2) convert moles C₂H₂/O₂ to moles CO₂ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles CO₂ to grams (via molar mass). *I had to guess the chemical reaction because the reaction coefficients are necessary in calculating the mass of CO₂.*
C₂H₂ + O₂ ----> 2 CO₂ + H₂
9.31 g C₂H₂ 1 mole 2 moles CO₂ 44.0095 g
------------------ x ------------------- x ---------------------- x ------------------- =
26.0373 g 1 mole C₂H₂ 1 mole
= 31.5 g CO₂
3.8 g O₂ 1 mole 2 moles CO₂ 44.0095 g
------------- x -------------------- x ---------------------- x -------------------- =
31.9988 g 1 mole O₂ 1 mole
= 10.6 g CO₂
10.6 g CO₂ is the maximum amount of CO₂ that can be produced. In other words, the entire 3.8 g O₂ will be used up in the reaction before all of the 9.31 g C₂H₂ will be used.
Pluto is a dwarf planet, but one of the largest known members, in the Kuiper belt.
The Kuiper Belt extends between 30 AU and 55 AU from the Sun
(1 AU = 1.5 × 10^8 km = distance from Earth to Sun).
Pluto's orbit is highly elliptical. It ranges from 30 AU to 50 AU. When Pluto is closest to the Sun, it is inside the orbit of Neptune (30 AU).
Astronomers class Pluto as a <em>resonant Kuiper belt object</em> (KBO). Because it gets so close to Neptune, its orbit is in <em>resonance</em> with that of Neptune. Pluto makes two orbits for every three of Neptune.
Answer:
<h2>0.93 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 37.2 g
volume = 40 mL
We have

We have the final answer as
<h3>0.93 g/mL</h3>
Hope this helps you
The reaction will be: FeBr2 + K --> KBr + Fe
Balancing gives: FeBr2 + 2K --> 2KBr + Fe
The molar mass of FeBr2 is 55.85 + 2*79.9 = 215.65 g/mol.
We divide 40 g / 215.65 g/mol = 0.185 mol FeBr2
Based on stoichiometry:
(0.185 mol FeBr2)(2 mol KBr/1 mol FeBr2) = 0.370 mol KBr