Answer: The current must be equal to
amps, or ~0.9574 amps.
Explanation:
You can find the current in amperes using ohms and watts from this formula:
![I = \sqrt{\frac{P}{R} }](https://tex.z-dn.net/?f=I%20%3D%20%5Csqrt%7B%5Cfrac%7BP%7D%7BR%7D%20%7D)
Where P represents power in watts, R represents resistance in ohms, and I represents current in amperes.
You can then substitute 60 and 55 into the equation to find I:
![I = \sqrt{\frac{55}{60} } \\I = \frac{\sqrt{55} }{\sqrt{60} }](https://tex.z-dn.net/?f=I%20%3D%20%5Csqrt%7B%5Cfrac%7B55%7D%7B60%7D%20%7D%20%5C%5CI%20%3D%20%5Cfrac%7B%5Csqrt%7B55%7D%20%7D%7B%5Csqrt%7B60%7D%20%7D)
Then, simplify the denominator:
![I = \frac{\sqrt{55} }{2\sqrt{15} }](https://tex.z-dn.net/?f=I%20%3D%20%5Cfrac%7B%5Csqrt%7B55%7D%20%7D%7B2%5Csqrt%7B15%7D%20%7D)
Rationalize the denominator:
![I = \frac{\sqrt{55} }{2\sqrt{15} } * \frac{\sqrt{15} }{\sqrt{15} } = \frac{\sqrt{825} }{30}](https://tex.z-dn.net/?f=I%20%3D%20%5Cfrac%7B%5Csqrt%7B55%7D%20%7D%7B2%5Csqrt%7B15%7D%20%7D%20%2A%20%5Cfrac%7B%5Csqrt%7B15%7D%20%7D%7B%5Csqrt%7B15%7D%20%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B825%7D%20%7D%7B30%7D)
Simplify the numerator by finding its factors:
![I = \frac{5\sqrt{33} }{30} = \frac{\sqrt{33} }{6}](https://tex.z-dn.net/?f=I%20%3D%20%5Cfrac%7B5%5Csqrt%7B33%7D%20%7D%7B30%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B33%7D%20%7D%7B6%7D)
The current must be equal to
amps, or ~0.9574 amps.