The input voltage is 120 V and the transformer is a step up transformer due to increase in the voltage induced in the secondary coil.
<h3>
Input voltage </h3>
The input voltage of the transformer is the voltage of the primary coil and it is calculated as follows;
Ns/Np = Es/Ep
where;
- Ns is the number of turn in the secondary coil
- Np is the number of turn in the primary coil
- Es is the secondary voltage
- Ep is the primary voltage
2X/X = 240/Ep
2 = 240/Ep
Ep = 240/2
Ep = 120 V
Thus, the transformer is a step up transformer due to increase in the voltage induced in the secondary coil.
Learn more about transformer here: brainly.com/question/25886292
#SPJ1
Answer:
The resultant vector is 1 m/s
Explanation:
The resultant vector is 1 m/s west based on triangle law of vector addition, when two sides of a triangle is represented by two vectors, the resultant vector is the third side of the triangle.
<span>c. What is the magnitude of the tension in the string at the bottom of the circle if you are swinging it at 3.37 m/s?
</span>
Answer:

Explanation:
For an electromagnetic wave, the relationship between magnetic field amplitude and electric field amplitude is given by

where
E is the amplitude of the electric field
c is the speed of light
B is the amplitude of the magnetic field
For the electromagnetic wave in this problem, we have
E = 10 V/m is the amplitude of the electric field
So if we solve the formula for B, we find the amplitude of the magnetic field:

Answer:
The time it will take for the car to reach a velocity of 28 m/s is 7 seconds
Explanation:
The parameters of the car are;
The acceleration of the car, a = 4 m/s²
The final velocity of the car, v = 28 m/s
The initial velocity of the car, u = 0 m/s (The car starts from rest)
The kinematic equation that can be used for finding (the time) how long it will take for the car to reach a velocity of 28 m/s is given as follows;
v = u + a·t
Where;
v = The final velocity of the car, v = 28 m/s
u = The initial velocity of the car = 0 m/s
a = The acceleration of the car = 4 m/s²
t = =The time it will take for the car to reach a velocity of 28 m/s
Therefore, we get;
t = (v - u)/a
t = (28 m/s - 0 m/s)/(4 m/s²) = 7 s
The time it will take for the car to reach a velocity of 28 m/s, t = 7 seconds.