The answer to this question is A.
Yes it is valid all the times under the consideration of acceleration due to gravity .it is not valid on space where there is no influence of gravity
The answer is c because the farther apart they are the greater there gravity is
Since bulb is connected in the closed circuit at the position of D
as well as switch B is also closed in that position so the current will flow through the bulb and bulb will glow in that position
So the most appropriate correct option will be
D. The light bulb will be on
Answer:
magnitude of the frictional torque is 0.11 Nm
Explanation:
Moment of inertia I = 0.33 kg⋅m2
Initial angular velocity w° = 0.69 rev/s = 2 x 3.142 x 0.69 = 4.34 rad/s
Final angular velocity w = 0 (since it stops)
Time t = 13 secs
Using w = w° + §t
Where § is angular acceleration
O = 4.34 + 13§
§ = -4.34/13 = -0.33 rad/s2
The negative sign implies it's a negative acceleration.
Frictional torque that brought it to rest must be equal to the original torque.
Torqu = I x §
T = 0.33 x 0.33 = 0.11 Nm