Answer:
3.5 x 10^22 moles of carbon are there in a 0.70 g (3.5 carat) diamond.
Explanation:
In case of diamond, the number of atoms is the same as the number of molecules.
Answer: iodine 131 iodine 132 isotopes
Explanation:
Answer:
b- The heat capacity ratio increases but output temperature don’t change
Explanation:
The heat capacity is the amount of energy required to raise the temperature of a body, by 1 degree. On the other hand, the specific heat capacity is the amount of heat required to raise the temperature of a of unit mass of a material by 1 degree.
Heat capacity is an extensive property meaning its value depends on the amount of material. Specific heat capacity is found by dividing heat capacity by the mass of the sample, thus making it independent of the amount (intensive property). So if the specific heat capacity increases and the mass of the sample remains the same, the heat capacity must increase too. Because of that options c and d that say that heat capacity reamins same are INCORRECT.
On the other hand, in which has to be with options a and b both say that the heat capacity increases which is correct, but about the output temperatures what happens is that if we increase the specific heat capacity of both fluids that are involved in a process of heat exchange in the same value, the value of the output temperatures do not change so only option a is CORRECT.
Phosphoric Acid - The last answer choice
Answer:
2.12 moles of gas were added.
Explanation:
We can solve this problem by using<em> Avogadro's law</em>, which states that at constant temperature and pressure:
Where in this case:
We <u>input the data</u>:
- 6.13 L * n₂ = 11.3 L * 2.51 mol
As <em>4.63 moles is the final number of moles</em>, the number of moles added is: