I hope it helps you ❤️❤️❤️❤️
Answer:
7.12 mm
Explanation:
From coulomb's law,
F = kqq'/r².................... Equation 1
Where F = force, k = proportionality constant, q and q' = The two point charges, r = distance between the two charges.
Make r the subject of the equation,
r = √(kqq'/F).......................... Equation 2
Given: q = q' = 75.0 nC = 75×10⁻⁹ C, F = 1.00 N
Constant: k = 9.0×10⁹ Nm²/C².
Substitute into equation 2
r = √[ (75×10⁻⁹ )²9.0×10⁹/1]
r = 75×10⁻⁹.√(9.0×10⁹)
r = (75×10⁻⁹)(9.49×10⁴)
r = 711.75×10⁻⁵
r = 7.12×10⁻³ m
r = 7.12 mm
Hence the distance between the point charge = 7.12 mm
Answer:
A) SiO2 is the limiting reactant
B) Theoretical yield= 72333.3g
C) % yield =91.5%
Explanation:
SiO2(s) + 2C(s) --------------> Si(s) + 2CO(g)
n(SiO2)= 155000/60 = 2583.33 mols
n(C)= 79000/12= 3291.66 mols
a)SiO2 is the limiting reactant
According to the balanced reaction equation,
60g of SiO2 produced 28g of SiO2
155000g of SiO2 will produce 155000×28/60= 72333.3g
Therefore theoretical yield of Si= 72333.3g
% yield= 66200/72333.3×100/1 =91.5%
Answer:
D.
Explanation:
Hello,
In this case, the isomer of an organic compound is another organic compound having the same molecular formula but different structural formula, thus, the given compound's molecular formula is C₅H₈ since it is an alkyne due to the triple bond. Next, we analyze each option:
A. C₅H₁₂
B. C₅H₁₀
C. C₅H₁₀
D. C₅H₈
For that reason answer is D. based on the molecular formula as well as due to the presence of the triple bond unsaturation (alkyne as well).
Best regards.