Answer: At some point in your chemistry education, you may have been introduced to the song “The Elements in which Tom Lehrer does a rapid
fire musical rendition of all the elements' names. Like me, you may even have been offered the opportunity to memorize this song for extra credit. If so, it’s possible that you still remember the names of all the elements, which is an impressive feat—not to mention a fun trick to pull out at parties.
Explanation:
the overall equation for the conversation of pyruvate to acetyl COA is as below
CH3COO-COO- + NAD+ + HS-COA = ch3-COO-S -COA +NADH +CO2
The oxidation of pyruvate led to a conversation of NAD+ to NADH and produces acetyl COA and CO2
The most common method astronomers use to determine the composition of stars, planets, and other objects is spectroscopy. This process utilizes instruments with a grating that spreads out the light from an object by wavelength. This spread-out light is called a spectrum. Every element has a unique fingerprint that allows researchers to determine what it is made of.
The fingerprint often appears as the absorption of light. Every atom has electrons, and these electrons like to stay in their lowest-energy levels. But when photons carrying energy hit an electron, they can push it to higher energy levels. This is absorption, and each element’s electrons absorb light at specific wavelengths related to the difference between energy levels in that atom. But the electrons want to return to their original levels, so they don’t hold onto the energy for long. When they emit the energy, they release photons with exactly the same wavelengths of light that were absorbed in the first place. An electron can release this light in any direction, so most of the light is emitted in directions away from our line of sight. Therefore, a dark line appears in the spectrum at that particular wavelength.
Because the wavelengths at which absorption lines occur are unique for each element, astronomers can measure the position of the lines to determine which elements are present in a target. The amount of light that is absorbed can also provide information about how much of each element is present.
A. It absorbs energy.
reactants are located on the left side of the equation, meaning energy among with other reactants were needed to get the reaction going, so it absorbed energy, which is also the endothermic process. The opposite of that would be having energy on the right side with the products which means that the reaction would've released energy which is the exothermic process. Hope this helps!