For constant fore the impulse could be increased by increasing the time for the force.
Answer:
(a) The absolute pressure at the bottom of the freshwater lake is 395.3 kPa
(b) The force exerted by the water on the window is 36101.5 N
Explanation:
(a)
The absolute pressure is given by the formula

Where
is the absolute pressure
is the atmospheric pressure
is the density
is the acceleration due to gravity (Take
)
h is the height
From the question
h = 30.0 m
= 1.00 × 10³ kg/m³ = 1000 kg/m³
= 101.3 kPa = 101300 Pa
Using the formula
P = 101300 + (1000×9.8×30.0)
P = 101300 + 294000
P =395300 Pa
P = 395.3 kPa
Hence, the absolute pressure at the bottom of the freshwater lake is 395.3 kPa
(b)
For the force exerted
From
P = F/A
Where P is the pressure
F is the force
and A is the area
Then, F = P × A
Here, The area will be area of the window of the underwater vehicle.
Diameter of the circular window = 34.1 cm = 0.341 m
From Area = πD²/4
Then, A = π×(0.341)²/4 = 0.0913269 m²
Now,
From F = P × A
F = 395300 × 0.0913269
F = 36101.5 N
Hence, the force exerted by the water on the window is 36101.5 N
By definition, acceleration is the change in velocity per change of time. As time passes by, the time increases in value. So, when the acceleration is decreasing while the time is increasing, then that means that the change of velocity is also decreasing with time. So, optimally, the initial velocity and the velocity at any time are very relatively close to each other,
3NaOH + FeCl3 → 3NaCl + Fe(OH)3
I believe d all of the above