Answer:
124.52 mL
Explanation:
from Boyle's Law,
PV = P'V' ................... Equation 1
Where P = Initial pressure of the gas, V = Initial volume of the gas, P' = Final pressure of the gas, V' = Final volume of the gas.
make V' the subject of the equation.
V' = PV/P'............. Equation 2
Given: P = 267 torr = (267×0.00131) = 0.34977 atm, V = 356 mL, P' = 1 atm
Substitute into equation 2
V' = (0.34977×356)/1
V' = 124.52 mL.
Hence the new volume of the balloon = 124.52 mL
Answer:
t = 4.1 seconds
Explanation:
It is given that,
Width of road which is to be crossed by a man is 8.25 m, it means it is distance to be covered.
Speed of man is 2.01 m/s
We need to find the time taken by the man to cross the road. It is a concept of speed. Speed of a person is given by total distance covered divided by time taken. So,
t is time taken
So, the time taken by the man to cross the road is 4.1 seconds.
Answer:
T=4.24 N.m
Explanation:
Torque is equal to force for distance for sinus of the angle between the direction of the force and the distance, the distance between the mass and the pivot is 1 m, and to obtain the force that is the mass for the gravity in this case, we need to know the component that produces a torque in the pivot
F=0.5 kg* 9.8 m/= 4.9 N
and we decompose the force in parallel direction to the rod and perpendicular direction to the rod, the magnitude that produces torque is the perpendicular component, because the torque is in function of the sinus
so, we obtain -> Fy= 4.9 N*sin(60)= 4.24 N
and, T= (4.24 N)*(1 m)*(Sin(90))= 4.24 N.m
anothe way to do it is,
T= (4.9 N)*(1 m)*(Sin(60))= 4.24 N.m, and we obtain the same result
Answer:
a)
Now we can replace the velocity for t=1.75 s
For t = 3.0 s we have:
b)
And we can find the positions for the two times required like this:
And now we can replace and we got:
Explanation:
The particle position is given by:
Part a
In order to find the velocity we need to take the first derivate for the position function like this:
Now we can replace the velocity for t=1.75 s
For t = 3.0 s we have:
Part b
For this case we can find the average velocity with the following formula:
And we can find the positions for the two times required like this:
And now we can replace and we got: