The following are scientific observations which led to development and changes of periodic table: Dmitri Mendeleev is the first periodic table organized 63 known element according to its properties, organized into rows and columns and inscribed name, mass and chemical properties on each element. Julius Lothar Meyer who independently worked in Germany with Ernest Rutherford. They experimented with 38 metals and found out that the positive charge of each element nucleus increased by one from element to element and organized the periodic table that tip to modern explanation of atomic number and the recognition of atomic number was the basis for organization of periodic table.
Answer:
PULLIN OUT THE COUPE AT THE LOT?
Explanation:
TOLD EM F*&*& 12 F*(&*(& SWAT
The motion of molecules in a ice cube are so packed together that they can't move freely like molecules in liquids and gases
Answer:
27.9 g
Explanation:
CsF + XeF₆ → CsXeF₇
First we <u>convert 73.1 g of cesium xenon heptafluoride (CsXeF₇) into moles</u>, using its<em> molar mass</em>:
- Molar mass of CsXeF₇ = 397.193 g/mol
- 73.1 g CsXeF₇ ÷ 397.193 g/mol = 0.184 mol CsXeF₇
As <em>1 mol of cesium fluoride (CsF) produces 1 mol of CsXeF₇</em>, in order to produce 0.184 moles of CsXeF₇ we would need 0.184 moles of CsF.
Now we <u>convert 0.184 moles of CsF to moles</u>, using the <em>molar mass of CsF</em>:
- Molar mass of CsF = 151.9 g/mol
- 0.184 mol * 151.9 g/mol = 27.9 g
For this item, we need to assume that air behaves like that of an ideal gas. Ideal gases follow the ideal gas law which can be written as follow,
PV = nRT
where P is the pressure,
V is the volume,
n is the number of mols,
R is the universal gas constant, and
T is temperature
In this item, we are to determine first the number of moles, n. We derive the equation,
n = PV /RT
Substitute the given values,
n = (1 atm)(5 x 10³ L) / (0.0821 L.atm/mol.K)(0 + 273.15)
n = 223.08 mols
From the given molar mass, we calculate for the mass of air.
m = (223.08 mols)(28.98 g/mol) = 6464.9 g
<em>ANSWER: 6464.9 g</em>