Answer:
2271.16N/C upward
Explanation:
The diagram well illustrate all the forces acting on the mass. The weight is acting downward and the force is acting upward in other to balance the weight.since the question says it is motionless, then indeed the forces are balanced.
First we determine the downward weight using

Hence for a mass of 3.82g 0r 0.00382kg we have the weight to be


To calculate the electric field,

Since the charge on the mass is negative, in order to generate upward force, there must be a like charge below it that is repelling it, Hebce we can conclude that the electric field lines are upward.
Hence the magnitude of the electric force is 2271.16N/C and the direction is upward
We have that the momentum p is given by the formula p=mv where m is the mass and v is the velocity. Since for A p=-14kgm/s and m=7, we have that the velocity is -14/7=-2m/s. Hence its speed is 2 m/s.
For b we have that p=15kgm/s and v=3m/s. Because m=p/v, we have m=3kg.
We also have that the momentum is conserved in this system. Hence, the net sum of the momentum of the 2 snowballs equals the momentum of the single giant ball. Hence, p(total)=p(combined)=-14+15=1kgm/s (momentum is a vector; the positive sign means that it tends to the positive direction).
<span>C. The filings will be clustered more densely where the field is weakest.</span>
Pulling the two ends of a rubber band further and further apart from each other.