5 km northeast. Left and up would make northeast
Answer:
The work done by gravity during the roll is 490.6 J
Explanation:
The work (W) is:

<em>Where</em>:
F: is the force
d: is the displacement = 20 m
The force is equal to the weight (W) in the x component:

<em>Where:</em>
m: is the mass of the bowling ball = 5 kg
g: is the gravity = 9.81 m/s²
θ: is the degree angle to the horizontal = 30°
Now, we can find the work:
Therefore, the work done by gravity during the roll is 490.6 J.
I hope it helps you!
Answer:
The value is 
Explanation:
From the question we are told that
The initial speed is 
Generally the total energy possessed by the space probe when on earth is mathematically represented as

Here
is the kinetic energy of the space probe due to its initial speed which is mathematically represented as
=>
=> 
And
is the kinetic energy that the space probe requires to escape the Earth's gravitational pull , this is mathematically represented as

Here
is the escape velocity from earth which has a value 
=> 
=> 
Generally given that at a position that is very far from the earth that the is Zero, the kinetic energy at that position is mathematically represented as

Generally from the law energy conservation we have that
So

=> 
=> 
=> 
Answer:it experiences no force
Explanation:
a charge moving in a direction parallel to the magnetic field experience no force.since the angle e is 0,force would also be 0
Answer:



Explanation:
= Uncertainty in position = 1.9 m
= Uncertainty in momentum
h = Planck's constant = 
m = Mass of object
From Heisenberg's uncertainty principle we know

The minimum uncertainty in the momentum of the object is 
Golf ball minimum uncertainty in the momentum of the object

Uncertainty in velocity is given by

The minimum uncertainty in the object's velocity is 
Electron


The minimum uncertainty in the object's velocity is
.