<span>The answers are as follows:
(a) how many meters are there in 11.0 light-years?
11.0 light years ( 365 days / 1 year ) ( 24 h / 1 day ) ( 60 min / 1 h ) ( 60 s / 1 min ) ( 2.998x10^8 m/s ) = 1.04x10^17 m
(b) an astronomical unit (au) is the average distance from the sun to earth, 1.50 × 108 km. how many au are there in 11.0 light-years?
1.04x10^17 m ( 1 au / </span>1.50 × 10^8 km <span>) ( 1 km / 1000 m) = 693329.472 au
(c) what is the speed of light in au/h? au/h
</span>2.998 × 10^8 m/s ( 1 au / 1.50 × 10^8 km ) ( 1 km / 1000 m) ( 3600 s / 1 h ) = 7.1952 au/h
Given:
A cylindrical container closed of both end has a radius of 7cm and height of 6cm.
Explanation:
A.) Find the total surface area of the container.
- A = 2πrh + 2πr²
- A = 2(3.14)(7)(6) + 2(3.14)(7 × 7)
- A = 263.76 + 307.72
- A = 571.48
B.) Find the volume of the container.
- V = πr²h
- V = (3.14)(7×7)(6)
- V = 923.16
Not sure huhuness.
#CarryOnLearning
Answer:
The acceleration is constant and positive
Explanation:
The straight line indicates that the acceleration is constant, while the positive slope indicates that the line is positive.
Time period = time/no. of waves = 6/3 = 2s
Let the unknown distance be xmiles
x/39-x/72=11hr
72x-39x/2808=11hr
33x/2808=11
33x= 30888
x=936miles
U can substitue back to check
at speed of 72mph, he would need 936/72=13hrs
at speed of 39mph, he would need 936/39=24hr
the difference is 24-13=11