The amount of solid does not affect how you are describing the solid so a is the answer
Explanation:
Geocentric model said that the Earth is at the center of the universe and everything revolves around it. It was considered to be stationary. Galileo proved this model incorrect with the help of his astronomical observations. Some of the key observation that he used to support the heliocentric model were:
1. He proposed the theory that the tides on the Earth occur because of its motion.
2. He observed the phases of the Venus which meant that the Venus revolved around the Sun and not the Earth.
3. He observed other planets and thus noted that they also move around the Sun and not Earth.
4. He discovered the Moons of other planets.
Because the temperature of the place its contained in is constantly changing, for example, if you put a room temperature item in the fridge it will become cold, or whatever the temperature you set your fridge to.
Answer:
λ = 162 10⁻⁷ m
Explanation:
Bohr's model for the hydrogen atom gives energy by the equation
= - k²e² / 2m (1 / n²)
Where k is the Coulomb constant, e and m the charge and mass of the electron respectively and n is an integer
The Planck equation
E = h f
The speed of light is
c = λ f
E = h c /λ
For a transition between two states we have
-
= - k²e² / 2m (1 /
² -1 /
²)
h c / λ = -k² e² / 2m (1 /
² - 1/
²)
1 / λ = (- k² e² / 2m h c) (1 /
² - 1/
²)
The Rydberg constant with a value of 1,097 107 m-1 is the result of the constant in parentheses
Let's calculate the emission of the transition
1 /λ = 1.097 10⁷ (1/10² - 1/8²)
1 / λ = 1.097 10⁷ (0.01 - 0.015625)
1 /λ = 0.006170625 10⁷
λ = 162 10⁻⁷ m
Answer:Broadly speaking, all energy in the universe can be categorized as either potential energy or kinetic energy. Potential energy is the energy associated with position, like a ball held up in the air. When you let go of that ball and let it fall, the potential energy converts into kinetic energy, or the energy associated with motion.
EXAMPLES: There are five types of kinetic energy: radiant, thermal, sound, electrical and mechanical. Let's explore several kinetic energy examples to better illustrate these various forms.