The decomposition of CCl4 is as follows:
CCl4 (g) ---> C(s) + 2Cl2 (g) Kp = 0.76
where Kp = (PCl2)^2 / (P_CCl4)
P_C is zero since carbon is in solid form.
Express P_CCl4 in terms of P_Cl2
0.76 = (P_Cl2)^2 / (P_CCl4)
0.76P_CCl4 = (P_Cl2)^2
Ptotal = P_Cl2 = 1.9 atm
Solve for P_CCl4
P_CCl4 = 4.75 atm<span />
Answer:
Equilibrium constant expression for
:
.
Where
,
, and
denote the activities of the three species, and
,
, and
denote the concentrations of the three species.
Explanation:
<h3>Equilibrium Constant Expression</h3>
The equilibrium constant expression of a (reversible) reaction takes the form a fraction.
Multiply the activity of each product of this reaction to get the numerator.
is the only product of this reaction. Besides, its coefficient in the balanced reaction is one. Therefore, the numerator would simply be
.
Similarly, multiply the activity of each reactant of this reaction to obtain the denominator. Note the coefficient "
" on the product side of this reaction.
is equivalent to
. The species
appeared twice among the reactants. Therefore, its activity should also appear twice in the denominator:
.
That's where the exponent "
" in this equilibrium constant expression came from.
Combine these two parts to obtain the equilibrium constant expression:
.
<h3 /><h3>Equilibrium Constant of Concentration</h3>
In dilute solutions, the equilibrium constant expression can be approximated with the concentrations of the aqueous "
" species. Note that all the three species here are indeed aqueous. Hence, this equilibrium constant expression can be approximated as:
.
<span>(0.038 / 100) * 763 = 0.29 mmHg
hope it helps
</span>
Exothermic gives off heat/energy and endothermic takes in heat/energy. Exothermic example: a candle flame
Endothermic example: baking bread
In Exothermic, you can expect the surrounding temp. to rise, and in Endothermic you can expect the surrounding temperature to fall.
Hope this helps
Ka x Kb = Kw Kw = 1 x 10⁻¹⁴
(1.3 x 10⁻⁷) x Kb = 1 x 10⁻¹⁴
Kb = ( 1 x 10⁻¹⁴ ) / ( 1.3 x 10⁻⁷)
Kb = 7.7 x 10⁻⁸
Answer D
hope this helps!