Answer:
a) correct answer is C
, b) 14º from the west to the north, c) v_{1g} = 300.79 km / h
Explanation:
This is a relative speed exercise using the addition of speeds.
1) when it is not specified regarding what is being measured, the medicine is carried out with respect to the Z Earth, therefore the correct answer is C
2 and 3) In this case we must compose the speed using the Pythagorean Theorem.
² =
² +
²
where v_{1a} is the speed of the airplane with respect to the air, v_{1g} airplane speed with respect to the Earth, v_{ag} air speed with respect to the Earth
in this case let's clear the speed of the airplane with respect to the Earth
v_{1g} = √(v_{1a}² - v_{ag}²)
v_{1g} = √ (310² - 75²)
v_{1g} = 300.79 km / h
we find the direction of the airplane using trigonometry
sin θ = v_{ag} / v_{1a}
θ = sin⁻¹ (v_{ag} /v_{1a})
θ = sin⁻¹ (75/310)
θ= 14º
the pilot must direct the aircraft at an angle of 14º from the west to the north
Answer:
Explanation:
Given that,
Surface area A= 17m²
The speed at the top v" = 66m/s
Speed beneath is v' =40 m/s
The density of air p =1.29kg/m³
Weight of plane?
Assuming that,
the height difference between the top and bottom of the wind is negligible and we can ignore any change in gravitational potential energy of the fluid.
Using Bernoulli equation
P'+ ½pv'²+ pgh' = P'' + ½pv''² + pgh''
Where
P' is pressure at the bottom in N/m²
P" is pressure at the top in N/m²
v' is velocity at the bottom in m/s
v" is velocity at the top in m/s
Then, Bernoulli equation becomes
P'+ ½pv'² = P'' + ½pv''²
Rearranging
P' — P'' = ½pv"² —½pv'²
P'—P" = ½p ( v"² —v'²)
P'—P" = ½ × 1.29 × (66²-40²)
P'—P" = 1777.62 N/m²
Lift force can be found from
Pressure = force/Area
Force = ∆P ×A
Force = (P' —P")×A
Since we already have (P'—P")
Then, F=W = (P' —P")×A
W = 1777.62 × 17
W = 30,219.54 N
The weight of the plane is 30.22 KN
<span>The primary reason a light bulb emits light is due to the heating of the resistance in the filament of the light bulb. In fact, the power dissipated in a resistor is given by
</span>

<span>where I is the current and R the resistance. The larger the resistance or the current in the resistor, the larger the power dissipated. Due to this dissipation of power, the temperature of the filament becomes very high, and the resistance becomes incandescent, emitting light.</span>
To find the answer, plot down the factors for every number.
12: 1, 2 ,3 ,4, 6, 12
18: 1, 2, 3, 6, 9, 18
84: 1, 2, 3, 4, 6, 7, 12
If you noticed, the number that was common to the 3 numbers, were 1, 2, 3, and 6
And 6 is the bigger number
So 6 is your GCF
1. Frequency: 
The energy given is the energy per mole of particles:

1 mole contains a number of Avogadro of particles,
, equal to
particles
So, by setting the following proportion, we can calculate the energy of a single photon:

This is the energy of a single photon; now we can calculate its frequency by using the formula:

where
is the Planck's constant
f is the photon frequency
Solving for f, we find

2. Wavelength: 
The wavelength of the photon is given by the equation:

where

is the speed of the photon (the speed of light). Substituting,
