Answer:
<em>Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the age of the universe. The table shows the lifetimes of stars as a function of their masses.[1] All stars are formed from collapsing clouds of gas and dust, often called nebulae or molecular clouds. Over the course of millions of years, these protostars settle down into a state of equilibrium, becoming what is known as a main-seque</em>
Answer:
4 m/s^2
Explanation:
The acceleration is defined as: Δv/Δt (the difference of the velocity over a time period in which happens that difference).
Remember that a difference is calculated by subtracting the initial value of a physical quantity from its final value.
In our case:
Δv = Vfinal - Vinitial = 36m/s - 0 m/s = 36m/s
Δt = 9s
a = Δv/Δt = 36m/s / 9s = 4m/s^2
Answer:
Superconducting materials can transport electrons with no resistance, and hence release no heat, sound, or other energy forms. Superconductivity occurs at a specific material's critical temperature (Tc). As temperature decreases, a superconducting material's resistance gradually decreases until it reaches critical temperature. At this point resistance drops off, often to zero, as shown in the graph at right.
Explanation: