a) First, to get ΔG°rxn we have to use this formula when:
ΔG° = - RT ㏑ K
when ΔG° is Gibbs free energy
and R is the constant = 8.314 J/mol K
and T is the temperature in Kelvin = 25 °C+ 273 = 298 K
and when K = 4.4 x 10^-2
so, by substitution:
ΔG°= - 8.314 * 298 *㏑(4.4 x 10^-2)
= -7739 J = -7.7 KJ
b) then, to get E° cell for a redox reaction we have to use this formula:
ΔE° Cell = (RT / nF) ㏑K
when R is a constant = 8.314 J/molK
and T is the temperature in Kelvin = 25°C + 273 = 298 K
and n = no.of moles of e- from the balanced redox reaction= 3
and F is Faraday constant = 96485 C/mol
and K = 4.4 x 10^-2
so, by substitution:
∴ ΔE° cell = (8.314 * 298 / 3* 96485) *㏑(4.4 x 10^-2)
= - 2.7 x 10^-2 V
Answer:
2s2 2p5
Rb < Sr< Sn< Te<I
Explanation:
Electron affinity is the ability of an atom to accept electrons to form negative ions.
Electron affinity is a periodic trend that decreases down the group but increases across the period.
This accounts for the trends observed in the answer. The atom having the electronic configuration, 2s2 2p5 must be a halogen and it exhibits the highest value of electron affinity.
Also, since electron affinity increases across the period, the electron affinities of the elements increases. Therefore, the arrangement of atoms as shown in the answer depends on increasing electron affinity.
Answer:
a. 3-brumo - 3-methylhexane
Explanation:
Alkyl Halides can undergo substitution reactions. Nucleophiles are electron rich species and has negative charge while Electrophiles are electron deficient species which carry positive charge. Alkyl halide which have polar carbon atom are electrophiles.