A) 0.189 N
The weight of the person on the asteroid is equal to the gravitational force exerted by the asteroid on the person, at a location on the surface of the asteroid:

where
G is the gravitational constant
8.7×10^13 kg is the mass of the asteroid
m = 130 kg is the mass of the man
R = 2.0 km = 2000 m is the radius of the asteroid
Substituting into the equation, we find

B) 2.41 m/s
In order to orbit just above the surface of the asteroid (r=R), the centripetal force that keeps the astronaut in orbit must be equal to the gravitational force acting on the astronaut:

where
v is the speed of the astronaut
Solving the formula for v, we find the minimum speed at which the astronaut should launch himself and then orbit the asteroid just above the surface:

Answer:
Explanation: Having two separate pathways of reaction and learning from pain is crucial to our survival. ... Therefore, humans tend to avoid objects or events that would cause them pain or harm; thus, adding this to their survival advantages.
Answer:
I believe it is luminosity and distance
Explanation:
So B
Answer:
The<u> heat transfer </u>model showed convection.
In the convection model, the red water on the bottom of the beaker <u>is hot</u>
This means that the water at the bottom of the beaker was <u> less dense than </u>the water near the top of the beaker.
Explanation:
<em>Convection</em> is the transference of heat energy by the movement (translation) of the particles of fluid (liquids or gases).
When the water on the bottom of the beaker is heated, it expands and becomes less dense.
The water near the top of the beaker is cold which makes it denser than the water at the bottom of the beaker.
Thus, the hot water from the bottom of the beaker will ascend toward the top of the beaker, while the cold water on top will descend toward the bottom. As long, as there is a difference of temperature between the water on the bottom and on top of the beaker, there will be a continuous movement of the particles: cold particles from the top replace hot particles from the bottom that ascend, and when the cold particles are heated they will ascend and will be replaced by new cold particles. This continuous translation of hot and cold particles in fluids is the model of heat transfer by convection.