1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tanya [424]
3 years ago
15

a boy steps off the end of a high diving board and drops into the water below. it takes the boy 0.78 seconds to reach the water.

How high was the diving board?
Physics
1 answer:
Mice21 [21]3 years ago
6 0
Cuz as effvsdcbh ftjhj
You might be interested in
A spring stretches 0.150 m when a 0.30 kg mass is hung from it. The spring is then stretched an additional 0.100 m from this equ
DochEvi [55]

Answer:

a)  k=19.6N/m

b)  V_m=0.81m/s

c)  a_m=6.561m/s^2

d)  K.E=0.096J

e)  T=0.78sec &F=1.29sec

f)   mx'' + kx' =0

Explanation:

From the question we are told that:

Stretch Length L=0.150m

Mass m=0.30kg

Total stretch lengthL_t=0.150+0.100=>0.25

a)

Generally the equation for Force F on the spring is mathematically given by

F=-km\\\\k=F/m\\\\k=\frac{m*g}{x}\\\\k=\frac{0.30*9.8}{0.15}

k=19.6N/m

b)Generally the equation for Max Velocity of Mass on the spring is mathematically given by

V_m=A\omega

Where

A=Amplitude

A=0.100m

And

\omega=angulat Velocity\\\\\omega=\sqrt{\frac{k}{m}}\\\\\omega=\sqrt{\frac{19.6}{0.3}}\\\\\omega=8.1rad/s

Therefore

V_m=A\omega\\\\V_m=8.1*0.1

V_m=0.81m/s

c)

Generally the equation for Max Acceleration of Mass on the spring is mathematically given by

a_m=\omega^2A

a_m=8.1^2*0.1

a_m=6.561m/s^2

d)

Generally the equation for Total mechanical energy of Mass on the spring is mathematically given by

K.E=\frac{1}{2}mv^2

K.E=\frac{1}{2}*0.3*0.8^2

K.E=0.096J

e)

Generally the equation for  the period T is mathematically given by

\omega=\frac{2\pi}{T}

T=\frac{2*3.142}{8.1}

T=0.78sec

Generally the equation for  the Frequency is mathematically given by

F=\frac{1}{T}

F=1.29sec

f)

Generally the Equation of time-dependent vertical position of the mass is mathematically given by

mx'' + kx' =0

Where

'= signify order of differentiation

7 0
3 years ago
A solid disk has a mass of 162 kg and a radius of 1.30m. This
RideAnS [48]

Answer:

754.3 m

Explanation:

The moment of inertia of the solid disk:

I = mR^2/2

Where m is the disk mass and R is the radius of the disk.

I = 162*1.3^2/2 = 136.89 kgm^2

The angular kinetic energy of the disk is then:

E_k = I\omega^2/2 = 136.89 * 18^2/2 = 22176.18 J

By law of energy conservation, this energy is converted to potential energy to pick up the 3kg block

let g = 9.8 m/s2

E_p = m_bgh = 22176.18 J

where m_b = 3 kg is the mass of block

3*9.8h = 22176.18

h = \frac{22176.18}{3*9.8} = 754.3 m

8 0
3 years ago
I need answers and solvings to these questions​
den301095 [7]

1) The period of a simple pendulum depends on B) III. only (the length of the pendulum)

2) The angular acceleration is C) 15.7 rad/s^2

3) The frequency of the oscillation is C) 1.6 Hz

4) The period of vibration is B) 0.6 s

5) The diameter of the nozzle is A) 5.0 mm

6) The force that must be applied is B) 266.7 N

Explanation:

1)

The period of a simple pendulum is given by

T=2\pi \sqrt{\frac{L}{g}}

where

T is the period

L is the length of the pendulum

g is the acceleration of gravity

From the equation, we see that the period of the pendulum depends only on its length and on the acceleration of gravity, while there is no dependence on the mass of the pendulum or on the amplitude of oscillation. Therefore, the correct option is

B) III. only (the length of the pendulum)

2)

The angular acceleration of the rotating disc is given by the equation

\alpha = \frac{\omega_f - \omega_i}{t}

where

\omega_f is the final angular velocity

\omega_i is the initial angular velocity

t is the time elapsed

For the compact disc in this problem we have:

\omega_i = 0 (since it starts from rest)

\omega_f = 300 rpm \cdot \frac{2\pi rad/rev}{60 s/min}=31.4 rad/s is the final angular velocity

t = 2 s

Substituting, we find

\alpha = \frac{31.4-0}{2}=15.7 rad/s^2

3)

For a simple harmonic oscillator, the acceleration and the displacement of the system are related by the equation

a=-\omega^2 x

where

a is the acceleration

x is the displacement

\omega is the angular frequency of the system

For the oscillator in this problem, we have the following relationship

a=-100 x

which implies that

\omega^2 = 100

And so

\omega = \sqrt{100}=10 rad/s

Also, the angular frequency is related to the frequency f by

f=\frac{\omega}{2\pi}

Therefore, the frequency of this simple harmonic oscillator is

f=\frac{10}{2\pi}=1.6 Hz

4)

When the mass is hanging on the sping, the weight of the mass is equal to the restoring force on the spring, so we can write

mg=kx

where

m is the mass

g=9.8 m/s^2 is the acceleration of gravity

k is the spring constant

x = 8.0 cm = 0.08 m is the stretching of the spring

We can re-arrange the equation as

\frac{k}{m}=\frac{g}{x}=\frac{9.8}{0.08}=122.5

The angular frequency of the spring is given by

\omega=\sqrt{\frac{k}{m}}=\sqrt{122.5}=11.1 Hz

And therefore, its period is

T=\frac{2\pi}{\omega}=\frac{2\pi}{11.1}=0.6 s

5)

According to the equation of continuity, the volume flow rate must remain constant, so we can write

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-sectional area of the hose, with r_1 = 5 mm being the radius of the hose

v_1 = 4 m/s is the speed of the petrol in the hose

A_2 = \pi r_2^2 is the cross-sectional area of the nozzle, with r_2 being the radius of the nozzle

v_2 = 16 m/s is the speed in the nozzle

Solving for r_2, we find the radius of the nozzle:

\pi r_1^2 v_1 = \pi r_2^2 v_2\\r_2 = r_1 \sqrt{\frac{v_1}{v_2}}=(5)\sqrt{\frac{4}{16}}=2.5 mm

So, the diameter of the nozzle will be

d_2 = 2r_2 = 2(2.5)=5.0 mm

6)

According to the Pascal principle, the pressure on the two pistons is the same, so we can write

\frac{F_1}{A_1}=\frac{F_2}{A_2}

where

F_1 is the force that must be applied to the small piston

A_1 = \pi r_1^2 is the area of the first piston, with r_1= 2 cm being its radius

F_2 = mg = (1500 kg)(9.8 m/s^2)=14700 N is the force applied on the bigger piston (the weight of the car)

A_2 = \pi r_2^2 is the area of the bigger piston, with r_2= 15 cm being its radius

Solving for F_1, we find

F_1 = \frac{F_2A_1}{A_2}=\frac{F_2 \pi r_1^2}{\pi r_2^2}=\frac{(14700)(2)^2}{(15)^2}=261 N

So, the closest answer is B) 266.7 N.

Learn more about pressure:

brainly.com/question/4868239

brainly.com/question/2438000

#LearnwithBrainly

5 0
3 years ago
Which statement is true about effective nuclear charge?a. Effective nuclear charge decreases as we move to the right across a ro
MissTica

Answer:

Option b. Effective nuclear charge increases as we move to the right across a row in the periodic table

Explanation:

The <em>effective nuclear charge </em>is a measure of how strong the protons in the nucleus of an atom attract the outermost electrons of such atom.

The <em>effective nuclear charge</em> is the net positive charge experienced by valence electrons and is calculated (as an approximation) by the equation: Zeff = Z – S, where Z is the atomic number and S is the number of shielding electrons.

The shielding electrons are those electrons in between the interesting electrons and the nucleus of the atom.

Since the shielding electrons are closer to the nucleus, they repel the outermost electrons and so cancel some of the attraction exerted by the positive charge of the nucleus, meaning that the outermost electrons feel less the efect of attraction of the protons. That is why in the equation of Zeff, the shielding electrons (S) subtract the total from the atomic number Z.

The <em>effective nuclear charge</em>, then, is responsible for some properties and trends in the periodic table. Here, you can see how this explains the trend of the atomic radius (size of the atom) accross a row in the periodic table.

  • As the<em> effective nuclear charge</em> is larger, in a same row of the periodic table, the shielding effect is lower, the outermost electrons are more strongly attracted by the nucleus, and the size of the atoms decrease. That is why as we move to the right in the periodic table, the size of the atoms decrease.

3 0
3 years ago
If a pedestrian walked 900 meters forward and 300 meters back
serious [3.7K]

Answer:

B

Explanation:

5 0
3 years ago
Other questions:
  • A note is being played on a string on a guitar. The string is then pushed to the side while still in contact with the same fret.
    14·1 answer
  • Why do clouds tend to form well above the ground?
    10·2 answers
  • Most papers do not reflect light very well because its surface is somewhat rough. State True or False.
    11·1 answer
  • A heat engine has a maximum possible efficiency of 0.780. If it operates between a deep lake with a constant temperature of-24.8
    13·1 answer
  • Why do streets and highways have speed limits rather than velocity limits?
    5·1 answer
  • ________are muscles connected to the skeleton.
    6·1 answer
  • An aluminum alloy rod has a length of 6.3243 cm at 16.00°C and a length of 6.3568 cm at the boiling point of water. (a) What is
    15·1 answer
  • Pilots of high-performance fighter planes can be subjected to large centripetal accelerations during high-speed turns. Because o
    15·1 answer
  • A person kicks a ball, giving it an initial velocity of 20.0 m/s up a wooden ramp. When the ball reaches the top, it becomes air
    12·1 answer
  • A student walks 12 blocks to a coffee shop. (Assume all the blocks are equal length.) How long will it take him to reach the cof
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!