Note that this is a position vs time graph.
From A to B, the graph is a straight line with a nonzero slope. This indicates a constant velocity.
From B to C, the graph is a straight line with 0 slope. This indicates a constant position, i.e. the object remains stationary.
From C to D, the graph is a straight line with a nonzero slope. This indicates a constant velocity.
When one body(sun) exerts a force on a second body(planet), the second body simultaneously exerts a force equal in magnitude and opposite in direction of the first body. Which makes the planet orbit in path C.
Hope this helps!!
Answer:
You will hear the note E₆
Explanation:
We know that:
Your speed = 88m/s
Original frequency = 1,046 Hz
Sound speed = 340 m/s
The Doppler effect says that:

Where:
f = original frequency
f' = new frequency
v = velocity of the sound wave
v0 = your velocity
vs = velocity of the source, in this case, the source is the diva, we assume that she does not move, so vs = 0.
Replacing the values that we know in the equation we have:

This frequency is close to the note E₆ (1,318.5 Hz)
Answer:
Option B. 8.1
Explanation:
From the question given above, the following data were obtained:
Angle θ = 71°
Hypothenus = 25
Adjacent = x
Thus, we can obtain the x component of the vector by using the cosine ratio as illustrated below:
Cos θ = Adjacent /Hypothenus
Cos 71 = x/25
Cross multiply
x = 25 × Cos 71
x = 25 × 0.3256
x = 8.1
Therefore, the x component of the vector is 8.1
Answer:
I_v = 2,700 W / m^2
I_m = 610 W / m^2
I_s = 16 W / m^2
Explanation:
Given:
- The Power of EM waves emitted by Sun P_s = 4.0*10^26 W
- Radius of Venus r_v = 1.08 * 10^11 m
- Radius of Mars r_m = 2.28 * 10^11 m
- Radius of Saturn r_s = 1.43 * 10^12 m
Find:
Determine the intensity of electromagnetic waves from the sun just outside the atmospheres of (a) Venus, (b) Mars, and (c) Saturn.
Solution:
- We know that Power is related to intensity and surface area of an object follows:
I = P / 4*pi*r^2
Where, A is the surface area of a sphere models the atmosphere around the planets.
a)
- The intensity at the surface of Venus is calculated as:
I_v = P_s / 4*pi*r^2_v
I_v = 4.0*10^26 / 4*pi*(1.08*10^11)^2
I_v = 2,700 W / m^2
b)
- The intensity at the surface of Mars is calculated as:
I_m = P_s / 4*pi*r^2_m
I_m = 4.0*10^26 / 4*pi*(2.28*10^11)^2
I_m = 610 W / m^2
c)
- The intensity at the surface of Saturn is calculated as:
I_s = P_s / 4*pi*r^2_s
I_s = 4.0*10^26 / 4*pi*(1.43*10^12)^2
I_s = 16 W / m^2