1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ollegr [7]
3 years ago
6

PLEASE HELP!! What type of bond does this molecule have?

Physics
2 answers:
ehidna [41]3 years ago
8 0
Looks like a double covalent bond.
ladessa [460]3 years ago
7 0

Answer : The correct option is, double covalent bond.

Explanation:

Ionic bond : It is defined as the bond that is formed by complete transfer of electrons from one atom to another atom.

That means, the atom which looses the electron is known as electropositive atom and the atom which gains the electron is known as electronegative atom.

The ionic bond is usually formed between a metal and a non-metal.

Covalent bond : It is defined as the bond which is formed when sharing of electrons takes place between the atoms.

This is usually formed between two non-metals.

In the given image, two oxygen atoms combine with 1 carbon atom and form CO_2 as a molecule.

In CO_2 molecule, carbon is a non-metal and oxygen is also non-metal. So, carbon and oxygen will form a covalent bond.

That means, two oxygen atoms combine with 1 carbon atom by two covalent bond or double covalent bond.

Hence, the correct option is, double covalent bond.

You might be interested in
A certain frictionless simple pendulum having a length l and mass m swings with period t. If both l and m are doubled, what is t
iVinArrow [24]

If l and m both are doubled then the period becomes √2*T

what is a simple pendulum?

It is the one which can be considered to be a point mass suspended from a string or rod of negligible mass.

A pendulum is a weight suspended from a pivot so that it can swing freely.

Here,

A certain frictionless simple pendulum having a length l and mass m

mass of pendulum = m

length of the pendulum = l

The period of simple pendulum is:

T = 2\pi \sqrt{\frac{l}{g} }

Where k is the constant.

Now the length and mass are doubled,

m' = 2m

l' = 2l

T' = 2\pi \sqrt{\frac{2l}{g} }

T' = \sqrt{2}* 2\pi \sqrt{\frac{l}{g} }

T' = \sqrt{2} * T

Hence,

If l and m both are doubled then the period becomes √2*T

Learn more about Simple Harmonic Motion here:

<u>brainly.com/question/17315536</u>

#SPJ4

8 0
1 year ago
Identify the law, write the equation and calculate the answer to the problem below.
lyudmila [28]

Find refractive index first

\\ \rm\Rrightarrow \mu=\dfrac{c}{v}

\\ \rm\Rrightarrow \mu=\dfrac{1.0003}{1.33}

\\ \rm\Rrightarrow \mu =0.75

Now

\\ \rm\Rrightarrow \dfrac{sini}{sinr}=\mu

\\ \rm\Rrightarrow \dfrac{sin45}{sinr}=0.75

\\ \rm\Rrightarrow \dfrac{sin45}{0.75}=sinr

\\ \rm\Rrightarrow sinr=0.94

\\ \rm\Rrightarrow r=sin^{-1}(0.94)

\\ \rm\Rrightarrow r=70^{\circ}

5 0
2 years ago
A diver leaves the end of a 4.0 m high diving board and strikes the water 1.3s later, 3.0m beyond the end of the board. Consider
shutvik [7]

Answer:

4.0 m/s

Explanation:

The motion of the diver is the motion of a projectile: so we need to find the horizontal and the vertical component of the initial velocity.

Let's consider the horizontal motion first. This motion occurs with constant speed, so the distance covered in a time t is

d=v_x t

where here we have

d = 3.0 m is the horizontal distance covered

vx is the horizontal velocity

t = 1.3 s is the duration of the fall

Solving for vx,

v_x = \frac{d}{t}=\frac{3.0 m}{1.3 s}=2.3 m/s

Now let's consider the vertical motion: this is an accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. The vertical position at time t is given by

y(t) = h + v_y t - \frac{1}{2}gt^2

where

h = 4.0 m is the initial height

vy is the initial vertical velocity

We know that at t = 1.3 s, the vertical position is zero: y = 0. Substituting these numbers, we can find vy

0=h+v_y t - \frac{1}{2}gt^2\\v_y = \frac{0.5gt^2-h}{t}=\frac{0.5(9.8 m/s^2)(1.3 s)^2-4.0 m}{1.3 s}=3.3 m/s

So now we can find the magnitude of the initial velocity:

v=\sqrt{v_x^2+v_y^2}=\sqrt{(2.3 m/s)^2+(3.3 m/s)^2}=4.0 m/s

4 0
3 years ago
On a clear day at a certain location, a 119-V/m vertical electric field exists near the Earth's surface. At the same place, the
IrinaVladis [17]

Answer:

(a) 62.69 nJ/m^3

(b) 1015.22 μJ/m^3

Explanation:

Electric field, E = 119 V/m

Magnetic field, B = 5.050 x 10^-5 T

(a) Energy density of electric field = \frac{1}{2}\varepsilon _{0}E^{2}

          =\frac{1}{2}\times 8.854\times 10^{-12}\times 119\times 119

          = 6.269 x 10^-8 J/m^3 = 62.69 nJ/m^3

(b) energy density of magnetic field = \frac{B^{2}}{2\mu _{0}}

=\frac{\left ( 5.05\times 10^{-5} \right )^{2}}{2\times 4\times 3.14\times 10^{-7}}

= 1.01522 x 10^-3 J/m^3 = 1015.22 μJ/m^3

8 0
3 years ago
Find the mass of an object on planet F if its weight is 650 N (g = 13m/s^2)
Andrew [12]

Answer:

the object's mass is 50 kg

Explanation:

We use Newton's second law to solve for the mass:

F = m * a , then   m = F / a

In our case, the acceleration is the gravitational acceleration on the planet, and the force is the weight of the object on the planet. So we get:

m = w / a = 650 N / 13 m/s^2 = 50 kg

Then, the object's mass is 50 kg.

5 0
2 years ago
Other questions:
  • What is the potential difference across a 15 Ω resistor that has a current of 3.0 A?
    9·2 answers
  • If the shoe has less mass, it will experience _______________ (more, less, the same) friction as it would with more mass.
    12·1 answer
  • Two charged objects are 1 meter apart. Calculate the magnitude of the electric force between them if the two charges are +1.0 μC
    8·1 answer
  • How many electrons make up a charge of - 30.0 μc?
    14·2 answers
  • Which of the following is not a necessary condition for seeing a magnified image with a
    9·1 answer
  • The milky way galaxy is the galaxy that is closest to us contains the most stars is farthest from us contains our solar system
    5·1 answer
  • Liquid ammonia (boiling point = –33.4°C) can be used as a refrigerant and heat transfer fluid. How much energy is needed to heat
    9·1 answer
  • On a distance vs. time graph, how do you know when the object is moving away from its starting position?
    5·2 answers
  • Will mark Brainliest it's due TODAY PLEASE HELP ME
    7·2 answers
  • What was the average velocity for the entire trip?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!