Answer:
The magnitude of the lift force L = 92.12 kN
The required angle is ≅ 16.35°
Explanation:
From the given information:
mass of the airplane = 9010 kg
radius of the airplane R = 9.77 mi
period T = 0.129 hours = (0.129 × 3600) secs
= 464.4 secs
The angular speed can be determined by using the expression:
ω = 2π / T
ω = 2 π/ 464.4
ω = 0.01353 rad/sec
The direction 

θ = 16.35°
The magnitude of the lift force L = mg ÷ Cos(θ)
L = (9010 × 9.81) ÷ Cos(16.35)
L = 88388.1 ÷ 0.9596
L = 92109.32 N
L = 92.12 kN
Answer:
4.6834625323 m/s
0 m/s
Explanation:
s = Displacement
t = Time
Velocity is given by

The bird's average velocity for the return flight is 4.6834625323 m/s
In the whole episode the bird went 5220 km away from its nest and came back. This means the displacement is zero.
Hence, the average velocity for the whole episode is 0 m/s