Answer:
Ro = 133 [kg/m³]
Explanation:
In order to solve this problem, we must apply the definition of density, which is defined as the relationship between mass and volume.

where:
m = mass [kg]
V = volume [m³]
We will convert the units of length to meters and the mass to kilograms.
L = 15 [cm] = 0.15 [m]
t = 2 [mm] = 0.002 [m]
w = 10 [cm] = 0.1 [m]
Now we can find the volume.
![V = 0.15*0.002*0.1\\V = 0.00003 [m^{3} ]](https://tex.z-dn.net/?f=V%20%3D%200.15%2A0.002%2A0.1%5C%5CV%20%3D%200.00003%20%5Bm%5E%7B3%7D%20%5D)
And the mass m = 4 [gramm] = 0.004 [kg]
![Ro = 0.004/0.00003\\Ro = 133 [kg/m^{3}]](https://tex.z-dn.net/?f=Ro%20%3D%200.004%2F0.00003%5C%5CRo%20%3D%20133%20%5Bkg%2Fm%5E%7B3%7D%5D)
Answer:
It will take 8.80 sec to fall from the building
Explanation:
We have given height pf the state building h = 380 m
Initial velocity will be 0 m /sec
So u = 0 m/sec
Acceleration due to gravity 
We have to find the fall time
According to second equation of motion 
So 

t = 8.80 sec
You would flip forward or to the side
Answer:
The formula for kinetic energy is K.E. = 1/2 mv 2 , where "m" stands for mass and "v" stands for velocity. Kinetic energy is typically measured in units of Joules, and 1 Joule is equal to 1 kilogram-meters squared per second squared.
Explanation:
A futuristic design for a car is to have a large solid disk-shaped flywheel within the car storing kinetic energy. The uniform flywheel has mass 370 kg with a radius of 0.500 m and can rotate up to 320 rev/s. Assuming all of this stored kinetic energy could be transferred to the linear velocity of the 3500-kg car, find the maximum attainable speed of the car.