The acceleration of the crate after it begins to move is 0.5 m/s²
We'll begin by calculating the the frictional force
Mass (m) = 50 Kg
Coefficient of kinetic friction (μ) = 0.15
Acceleration due to gravity (g) = 10 m/s²
Normal reaction (N) = mg = 50 × 10 = 500 N
<h3>Frictional force (Fբ) =?</h3>
Fբ = μN
Fբ = 0.15 × 500
<h3>Fբ = 75 N</h3>
- Next, we shall determine the net force acting on the crate
Frictional force (Fբ) = 75 N
Force (F) = 100 N
<h3>Net force (Fₙ) =?</h3>
Fₙ = F – Fբ
Fₙ = 100 – 75
<h3>Fₙ = 25 N</h3>
- Finally, we shall determine the acceleration of the crate
Mass (m) = 50 Kg
Net force (Fₙ) = 25 N
<h3>Acceleration (a) =?</h3>
a = Fₙ / m
a = 25 / 50
<h3>a = 0.5 m/s²</h3>
Therefore, the acceleration of the crate is 0.5 m/s²
Learn more on friction: brainly.com/question/364384
Answer:
Explanation:
a )
The stored elastic energy of compressed spring
= 1 / 2 k X²
= .5 x 19.6 x (.20)²
= .392 J
b ) The stored potential energy will be converted into gravitational potential energy of the block earth system when the block will ascend along the incline . So change in the gravitational potential energy will be same as stored elastic potential energy of the spring that is .392 J .
c ) Let h be the distance along the incline which the block ascends.
vertical height attained ( H ) =h sin30
= .5 h
elastic potential energy = gravitational energy
.392 = mg H
.392 = 2 x 9.8 x .5 h
h = .04 m
4 cm .
=