The work done by the elephant to lift one log is the force multiplied by the height at which the log has been lifted:

And so, the total work done to lift the 7 logs is 7 times the work done to lift each log:
Answer:

So then the answer for this case would be 29906 cal but we need to convert this into KJ and we know that 1 cal = 4.184 J and if we convert we got:

Explanation:
For this case we know the mass of the water given :

And we know that the initial temperature for this water is
.
We want to cool this water to the human body temperature 
Since the temperatures given are not near to 0C (fusion point) or 100C (the boling point) we don't need to use latent heat, then the only heat involved for this case is the sensible heat given by:

Where
represent the specific heat for the water and this value from tables we know that
for the water.
So then we have everything in order to replace into the formula of sensible heat and we got:

So then the answer for this case would be 29906 cal but we need to convert this into KJ and we know that 1 cal = 4.184 J and if we convert we got:

Answer:
7 m/s
Explanation:
To solve this problem you must use the conservation of energy.

That math speak for, initial kinetic energy plus initial potential energy equals final kinetic energy plus final potential energy.
The initial PE (potential energy) is 0 because it hasn't been raised in the air yet. The final KE (kinetic energy) is 0 because it isn't moving. This gives the following:


K1=U2

Solve for v

Input known values and you get 7 m/s.
Answer:
Explanation:
a ) V = 3 cos(0.5t)
differentiating with respect to t
dv /dt = -3 x .5 sin0.5t
= -1.5 sin0.5t.
acceleration = - 1.5 sin 0.5t
when t = 3 s
acceleration = - 1.5 sin 1.5
= - 1.496 ms⁻²
v = 3 cos.5t
b ) dx/dt = 3 cos 0.5 t
dx = 3 cos 0.5 t dt
integrating on both sides
x = 3 sin .5t / .5
x = 6 sin0.5t
At t = 2 s
x = 6 sin 1
x = 5.05 m