A needle valve and collar.
They will subtract to form a combined wave with a lower amplitude
On an incline, the force causing the ball to move downwards would be gravity. Additionally, the component of gravity causing this ball to move downwards would be mgsintheta.
Hope this helps!
If the current takes him downstream we must find the resultant vector of the velocities:

Then if the river is 3000 m-wide the swimmer will have to pass:
1.3520747 · 300 = 4056.14 m t = 4056.14 m : 1 m/s
a ) It takes
4056.15 seconds ( 1 hour 7 minutes and 36 seconds ) to cross the river.
b ) 0.91 · 3000 =
2730 mHe will be 2730 m downstream.
Answer:
a) L=0. b) L = 262 k ^ Kg m²/s and c) L = 1020.7 k^ kg m²/s
Explanation:
It is angular momentum given by
L = r x p
Bold are vectors; where L is the angular momentum, r the position of the particle and p its linear momentum
One of the easiest ways to make this vector product is with the use of determinants
![{array}\right] \left[\begin{array}{ccc}i&j&k\\x&y&z\\px&py&pz\end{array}\right]](https://tex.z-dn.net/?f=%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5Cx%26y%26z%5C%5Cpx%26py%26pz%5Cend%7Barray%7D%5Cright%5D)
Let's apply this relationship to our case
Let's start by breaking down the speed
v₀ₓ = v₀ cosn 45
voy =v₀ sin 45
v₀ₓ = 9 cos 45
voy = 9 without 45
v₀ₓ = 6.36 m / s
voy = 6.36 m / s
a) at launch point r = 0 whereby L = 0
. b) let's find the position for maximum height, we can use kinematics, at this point the vertical speed is zero
vfy² = voy²- 2 g y
y = voy² / 2g
y = (6.36)²/2 9.8
y = 2.06 m
Let's calculate the angular momentum
L= ![\left[\begin{array}{ccc}i&j&k\\x&y&0\\px&0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5Cx%26y%260%5C%5Cpx%260%260%5Cend%7Barray%7D%5Cright%5D)
L = -px y k ^
L = - (m vox) (2.06) k ^
L = - 20 6.36 2.06 k ^
L = 262 k ^ Kg m² / s
The angular momentum is on the z axis
c) At the point of impact, at this point the height is zero and the position on the x-axis is the range
R = vo² sin 2θ / g
R = 9² sin (2 45) /9.8
R = 8.26 m
L =
L = - x py k ^
L = - x m voy
L = - 8.26 20 6.36 k ^
L = 1020.7 k^ kg m² /s