<span>c) convection currents in the mantle </span>
As altitude increases, temperature increases.
The stratosphere is the part of the atmosphere that starts in the tropopause and ends in the estratopause. In the troposphere, the air is close to the Earth surface. The air surface can absorb more sunlight energy than the air, so the Earth surface heats the air. As you go higher, the distance to the Earth surface is higher, so the temperature is lower. The troposphere ends in the tropopause, where this trend changes. In the estratopause, there is a lot of ozone, which absorbs the dangerous UV radiation and converts into heat. That heat warms the air. So the air which is close to the estratopause is warm because of the heat released by the ozone reactions. The tropopause is far from the Earth surface and far from the ozone layer, that’s why it is cold. So the tropopause is cold and the estratopause is warm, which means: the air becomes warmer <span>as you rise above the tropopause until you get to the estratopause.</span>
A motorboat accelerates uniformly from a velocity of 6.5m/s
to the west to a velocity of 1.5m/s to the west. if its accelerate was 2.7m/s2
to the east ,
how far did it travel during the accelration? Give your
answer in units of kilometers per hour/sec. To find the acceleration of the car
we have to
<span>
1. First determine
the suitable formula for this word problem.
Which is a. A=vf-vi/t</span>
which will be
Given are: Vi= 6.5 m/s Vf= 1.5 m/s a= 2.7 m/sec2 t=1.85s
Solution:
<span>
x = v0t + ½at2</span>
<span>x = <span>16.645375 m </span></span>
1 in=2.54 cm=(2.54 cm)(1 m/100 cm)=0.0254 m
Therefore:
1 in=0.0254 m
1 in³=(0.0254 m)³=1.6387064 x 10⁻⁵ m³
Therefore:
8.06 in³=(8.06 in³)(1.6387064 x 10⁻⁵ m³ / 1 in³)≈1.321 x 10⁻⁴ m³.
Answer: 8.06 in³=1.321 x 10⁻⁴ m³