Answer:
127.3° C, (This is not a choice)
Explanation:
This is about the colligative property of boiling point.
ΔT = Kb . m . i
Where:
ΔT = T° boling of solution - T° boiling of pure solvent
Kb = Boiling constant
m = molal (mol/kg)
i = Van't Hoff factor (number of particles dissolved in solution)
Water is not a ionic compound, but we assume that i = 2
H₂O → H⁺ + OH⁻
T° boling of solution - 118.1°C = 0.52°C . m . 2
Mass of solvent = Solvent volume / Solvent density
Mass of solvent = 500 mL / 1.049g/mL → 476.6 g
Mol of water are mass / molar mass
76 g / 18g/m = 4.22 moles
These moles are in 476.6 g
Mol / kg = molal → 4.22 m / 0.4766 kg = 8.85 m
T° boling of solution = 0.52°C . 8.85 m . 2 + 118.1°C = 127.3°C
The conversion of volume to moles at STP is 1 mole.
The ideal gas equation is given as :
P V = n R T
where,
P = pressure of the gas
V = volume of the gas
n = ?
R = constant = 0.823 atm L / mol K
T = temperature
At STP , the pressure is 1 atm and the temperature is 273.15 K, the volume At STP is 22.4 L.
moles , n = P V / R T
n = ( 1 × 22.4 ) / (0.0823 × 273.15)
n = 1 mole
Thus, at STP , the number of moles is 1 mol.
To learn more about moles here
brainly.com/question/8429153
#SPJ4
<span>The answer to the question "what is the highest point of the transverse wave called" is a crest or peak. A transverse wave is a wave in which the medium of the wave vibrates at 90 degrees to the direction in which the wave is moving at. The lowest points are called the troughs. Examples of transverse waves are light and electromagnetic radiation.</span>
Answer:
Nitrogen, Hydrogen, Oxygen, Chlorine, and Fluorine are all gases at room temperature.
Explanation: