Divide 50 miles an hour or mph by 0.621, should give you 80.51 kilometers an hour or km/hr, this being the speed limit on that street in km/hr. If you're going 120 km/hr on an 80.51 kilometers an hour road you are speeding, as you're above the speed limit.
The atoms of different chemical elements can be differentiated based on the number of protons.
Each chemical element is differentiated by his number of protons. This number of protons is also knowing as atomic number and it is represented by the letter (Z).
The atomic number represented the number of protons in the nucleus of an element. For example:
- The element that has only 1 proton in his nucleus is Hydrogen atom.
- The element that has 2 protons in his nucleus is Helium atom.
<h3>What is an atom?</h3>
The atom is the smallest part of the composition of matter, it is indivisible and is composed of a nucleus that has protons and neutrons, and around the nucleus there are the electrons.
Learn more about the atom at: brainly.com/question/17545314
#SPJ4
Answer:
2.3 x 10-23 g.
Explanation:
The mass of a single atom is the mass number, 14, is the mass in grams of one mole of carbon.
One mole of Nitrogen atom is 6.022 x 1023 atoms (Avogadro's number). This can then used to convert a nitogen atom to grams by the ratio:
mass of 1 atom / 1 atom = mass of a mole of atoms / 6.022 x 10^23 atoms.
mass of 1 atom = mass of a mole of atoms / 6.022 x 1023
mass of 1 N atom = 14 / 6.022 x 10^23 N atoms
mass of 1 N atom = 2.325 x 10^-23 g
The mass of a single Nitrogen atom is 2.325 x 10-23 g.
If you notice in the graph for antibiotic A, the number of bacteria actually INCREASES as time increases after the antibiotic was given. In the second graph, the amount of bacteria increases just a little bit (likely as the antibiotic sets in) and then decreases until no bacteria is left at all. This means that the antibiotic was the most successful because not only did the amount of bacteria decrease over time, but also all of the bacteria were eventually killed.
The last graph is shown as no antibiotic given. This is a graph showing the control group. There is always a control group in an experiment where nothing is done to the group. This is used to compare the results in the end of the experiment.
Answer:
The answer you have selected is correct
Explanation: