How can I help? What’s the question?
Answer:
the magnitude of the magnetic force on the wire is 0.2298 N
Explanation:
Given the data in the question;
we know that, the magnitude of magnetic force is given as;
|F | = I( × )
given that
I = 2.6 A
= 0.17
= 0.52
so we substitute
|F | = 2.6( 0.17i" × 0.52j" )
|F | = 0.2298 N
Therefore, the magnitude of the magnetic force on the wire is 0.2298 N
Answer:
"It is made of numbers" describes the digital signal.
Explanation:
The digital signal are the electrical signal which is translated into the pattern of bits. The digital signal are always discrete value in every sampling point. The conversion of the programming into the stream or the binary sequence like 0s and 1s. The digital signals never gets weaken over distance but the analog signal gets weakened or impair at distance. The digital signals are consists of one or two value, Timing graph are square waves.
Answer:
d) 1.2 mT
Explanation:
Here we want to find the magnitude of the magnetic field at a distance of 2.5 mm from the axis of the coaxial cable.
First of all, we observe that:
- The internal cylindrical conductor of radius 2 mm can be treated as a conductive wire placed at the axis of the cable, since here we are analyzing the field outside the radius of the conductor. The current flowing in this conductor is
I = 15 A
- The external conductor, of radius between 3 mm and 3.5 mm, does not contribute to the field at r = 2.5 mm, since 2.5 mm is situated before the inner shell of the conductor (at 3 mm).
Therefore, the net magnetic field is just given by the internal conductor. The magnetic field produced by a wire is given by
where
is the vacuum permeability
I = 15 A is the current in the conductor
r = 2.5 mm = 0.0025 m is the distance from the axis at which we want to calculate the field
Substituting, we find:
Answer:
Like charges repel
Different charges attract
Explanation:
When particles of similar charges are brought together, they repel each other and increase the distance of separation. Repulsion occurs because both two electrons have negative electrical charge forcing their lines of force to repel. However, when particles of opposite charges are brought nearer to each other, they attract each other and reduce the distance of separation.