Answer:
Explanation:
Area of square loop = L²
Flux Φ = area x magnetic field
= L²B
Frequency = f
angular velocity ω = 2πf
a )
Let at time t = 0 , the magnetic field is making 90 degree with the face of the loop
flux through loop = L²B
After time t , coil will turn by angle ω t = 2πft
Flux through the loop = L²B cosω t
Φ (t) = L²B cosω t
= L²B cos2πft
b )
emf induced e
= - d/dt [Φ (t)]
= - d/dt [ L²B cosω t]
= L²B ω sinω t
= L²B 2πf sin2πft
c )
current = e / R
(L²B ω/ R ) sinω t
Power delivered
P(t) = VI ,
VOLT X CURRENT
= AB ω sinω t X ( AB ω/ R ) sinω t
= L⁴B² 4π²f²/R sin²2πft
e )
torque = MB sinω t
τ(t) = i(L²B ) sinω t
= (L²B ω/ R ) sinω t x (L²B ) sinω t
= (L²B )²ω/ R sin²ω t
= (L²B )² 2πf/ R sin²2πft
Answer:
the rate of flow = 29.28 ×10⁻³ m³/s or 0.029 m³/s
Explanation:
Given:
Diameter of the pipe = 100mm = 0.1m
Contraction ratio = 0.5
thus, diameter at the throat of venturimeter = 0.5×0.1m = 0.05m
The formula for discharge through a venturimeter is given as:

Where,
is the coefficient of discharge = 0.97 (given)
A₁ = Area of the pipe
A₁ = 
A₂ = Area at the throat
A₂ = 
g = acceleration due to gravity = 9.8m/s²
Now,
The gauge pressure at throat = Absolute pressure - The atmospheric pressure
⇒The gauge pressure at throat = 2 - 10.3 = -8.3 m (Atmosphric pressure = 10.3 m of water)
Thus, the pressure difference at the throat and the pipe = 3- (-8.3) = 11.3m
Substituting the values in the discharge formula we get
or

or
Q = 29.28 ×10⁻³ m³/s
Hence, the rate of flow = 29.28 ×10⁻³ m³/s or 0.029 m³/s
Answer:
April to June
Explanation:
Not really an explanation, I just know it.
B) A magnetic field is created around the wire.
This idea is one of the fundamental ideas of physics - an electric current has a magnetic field, whether it's moving through a wire or space.
35 because the water will react differntly n get warmer