The density is 81.4 g/m3. Before you start plugging numbers into the density formula (D=M/V), you should convert 104 kg to grams, which ends up being 104,000 grams. Then you can plug in the 104,000 grams and 1,278 m3 into the formula. When you divide the mass by the volume, you get a really long decimal, which you can round to 81.4 g/m3, or whatever place your teacher wants you to round to.
Answer:
(a) Force must be grater than 283.87 N
(B) Force will be equal to 193.945 N
Explanation:
We have given mass of the crate m = 49.6 kg
Acceleration due to gravity 
Coefficient of static friction 
Coefficient of kinetic friction 
(a) Static friction force is given by 
So to just start the crate moving we have to apply more force than 283.87 N
(B) This force will be equal to kinetic friction force
We know that kinetic friction force is given by 
The correct letter of the answer would be letter b, Bob is using his personal knowledge of the local area to make his forecast. It does not look like he's ignoring the computer for he's been the top meteorologist for ten years, meaning to say, he would use his knowledge about the local area and tell them his knowledge about the weather.
It takes the shape of the cup and it can be sucked through a straw
Answer:
a. 4
Explanation:
Hi there!
The equation of kinetic energy (KE) is the following:
KE = 1/2 · m · v²
Where:
m = mass of the car.
v = speed of the car.
Let´s see how would be the equation if the velocity is doubled (2 · v)
KE2 = 1/2 · m · (2 · v)²
Distributing the exponent:
KE2 = 1/2 · m · 2² · v²
KE2 = 1/2 · m · 4 · v²
KE2 = 4 (1/2 · m · v²)
KE2 = 4KE
Doubling the velocity increased the kinetic energy by 4.