Answer:
KE = 1.75 J
Explanation:
given,
mass of ball, m₁ = 300 g = 0.3 Kg
mass of ball 2, m₂ = 600 g = 0.6 Kg
length of the rod = 40 cm = 0.4 m
Angular speed = 100 rpm= 
=10.47\ rad/s
now, finding the position of center of mass of the system
r₁ + r₂ = 0.4 m.....(1)
equating momentum about center of mass
m₁r₁ = m₂ r₂
0.3 x r₁ = 0.6 r₂
r₁ = 2 r₂
Putting value in equation 1
2 r₂ + r₂ = 0.4
r₂ = 0.4/3
r₁ = 0.8/3
now, calculation of rotational energy




KE = 1.75 J
the rotational kinetic energy is equal to 1.75 J
Answer:
the stopping distance is greater than the free length of the track, the vehicle leaves the track before it can brake
Explanation:
This problem can be solved using the kinematics relations, let's start by finding the final velocity of the acceleration period
v² = v₀² + 2 a₁ x
indicate that the initial velocity is zero
v² = 2 a₁ x
let's calculate
v =
v = 143.666 m / s
now for the second interval let's find the distance it takes to stop
v₂² = v² - 2 a₂ x₂
in this part the final velocity is zero (v₂ = 0)
0 = v² - 2 a₂ x₂
x₂ = v² / 2a₂
let's calculate
x₂ =
x₂ = 573 m
as the stopping distance is greater than the free length of the track, the vehicle leaves the track before it can brake
Answer:
Your answer would be letter <em><u>B</u></em><em><u>.</u></em><em><u> </u></em><em><u>Electrons</u></em><em><u> </u></em><em><u>orbit</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>nucleus</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>energy</u></em><em><u> </u></em><em><u>level</u></em><em><u>.</u></em>
Explanation:
Hope it helps..
Just correct me if I'm wrong, okay?
But ur welcome!!
(;ŏ﹏ŏ)(◕ᴗ◕✿)