Answer: 117.60N
Explanation:
Weight is a force. Therefore, we can use the force formula to find weight.

W = weight
m = mass
g = acceleration due to gravity (
)

<span> changing its shape
changing its mass
or changing its volume</span>
Answer:
1) In a concave mirror parallel rays falling on it converges at F and 2F.
Explanation:
Spherical mirrors can be used for magnification of images. There are basically two types of spherical mirrors and they are converging mirror and diverging mirrors. The converging mirrors are also termed as concave mirrors and its basic work is to converge or combine light rays coming from a larger distance to a single point. Mostly the light beams falling parallel to the principle axis of the concave mirror will be acting as parallel rays. And when these parallel rays fall on the mirror, the converging point can be the focal point of the mirror.
Thus the location of converging point in concave mirrors will be based on the position or distance of object from the mirror. If the object distance is very far from the twice the focal length distance of mirror, then the converging point will be the focal point or F. And if the object is placed slightly greater than twice the distance of focal point, then the image will be obtained at 2F. But the parallel beams will be converging at F and 2F.
Answer:
The current is 2.0 A.
(A) is correct option.
Explanation:
Given that,
Length = 150 m
Radius = 0.15 mm
Current density
We need to calculate the current
Using formula of current density


Where, J = current density
A = area
I = current
Put the value into the formula


Hence, The current is 2.0 A.
Answer:
These are the two statements with scientific facts that explain the described phenomenon
<span>
Gravitation between two objects increases when the distance between them decreases.</span>
When the mass of an object increases, its gravitational pull also increases.
Justification:
Those two facts are represented in the Universal Law of Gravity discovered by the scientific Sir Isaac Newton (1642 to 1727) and published in his book <span>Philosophiae naturalis principia mathematica.</span>
That law is represented by the equation:
F = G × m₁ × m₂ / d²
The product of the two masses on the numerator accounts for the fact that the gravitational force is directly proportional to the product of the masses, which is that as the masses increase the attraction also increase.
The term d² (square of the distance that separates the objects) in the denominator accounts for the fact that the gravitational force is inversely proportional to the square of the distance; that is as the separation of the objects increase the gravitational force decrease.