Answer:
Part a)
E = 0
Part b)

Part c)
Electric field inside the conductor is again zero

Part d)

Explanation:
Part a)
conducting sphere is of radius
R = 2 cm
so electric field inside any conductor is always zero
So electric field at r = 1 cm
E = 0
Part b)
Now at r = 3 cm
By Gauss law



Part c)
Again when we use r = 4.50 cm
then we will have
Electric field inside the conductor is again zero

Part d)
Now at r = 7 cm
again by Gauss law



Answer:
GDXMZC<XZDFSaYTULRSHYADTGVS
Explanation:
KJ.KHG<DCŞJHJdjhgjöfhds DCSLÇKÖJMNHBGEVCYRWX
Answer:
0.3 eV, 0.5eV,, 8 eV, 2.0eV, 2.50 eV, 2.8 eV
Explanation:
In a given material the emission and absorption spectra are equivalent, for which the emission spectrum observed at high temperature for the material corresponds to the transition between the energy states of the material, the process is that the electrons exist from the ground state until an excited state and after a short period of time or these electrons relax emitting photons.
In the absorption process, the material is at low temperature, ideally at A = 0K, whereby all states are in the ground state and all excited states are empty. therefore it can absorb the beam energy for each transition given from the ground state to each excited edtado.
Consequently, the lines above the absorption oscillate lines coincide with the lines of emotion, this we see lines oscillate at 0.3 eV, 0.5eV,, 8 eV, 2.0eV, 2.50 eV, 2.8 eV
To be able to answer this item, we are to calculate the power that the machine could deliver from hp to kW.
(45 hp)(746 W/1 hp) = 33570 W
Power is the amount of energy delivered at a certain period.
t = (6.20 x 10^2 J)/ (33570 kJ/s)
t = 0.01845 s