We have that the time it will take Jupiter to around the sky is mathematically given as
Psyn=295days
<h3>Time for Jupiter to around the sky</h3>
Question Parameters:
If it takes Jupiter 13 years to orbit the Sun.
Generally, The earth moved a bit further, one Jupiter period ago, This is called synodic period

Psyn=295days
For more information on Arithmetic visit
brainly.com/question/22568180
Answer:
(a) -202 m/s²
(b) 198 m
Explanation:
Given data
- Initial speed (v₀): 283 m/s

- Final speed (vf): 0 (rest)
(a) The acceleration (a) is the change in the speed over the time elapsed.
a = (vf - v₀)/t = (0 - 283 m/s)/ 1.40s = -202 m/s²
(b) We can find the distance traveled (d) using the following kinematic expression.
y = v₀ × t + 1/2 × a × t²
y = 283 m/s × 1.40 s + 1/2 × (-202 m/s²) × (1.40 s)²
y = 198 m
Answer:
1. A
2. B
Explanation:
1. As long as The force is equally distributed the object will not move .
2. If the force in one side is greater than that of the other the object will move
Answer:
a) Weight of the rock out of the water = 16.37 N
b) Buoyancy force = 4.61 N
c) Mass of the water displaced = 0.47 kg
d) Weight of rock under water = 11.76 N
Explanation:
a) Mass of the rock out of the water = Volume x Density
Volume = 470 cm³
Density = 3.55 g/cm³
Mass = 470 x 3.55 = 1668.5 g = 1.6685 kg
Weight of the rock out of the water = 1.6685 x 9.81 = 16.37 N
b) Buoyancy force = Volume x Density of liquid x Acceleration due to gravity.
Volume = 470 cm³
Density of liquid = 1 g/cm³

c) Mass of the water displaced = Volume of body x Density of liquid
Mass of the water displaced = 470 x 1 = 470 g = 0.47 kg
d) Weight of rock under water = Weight of the rock out of the water - Buoyancy force
Weight of rock under water = 16.37 - 4.61 =11.76 N
Answer:
1.5min
Explanation:
To solve the problem it is necessary to take into account the concepts related to Period and Centripetal Acceleration.
By definition centripetal acceleration is given by

Where,
V = Tangencial velocity
r = radius
With our values we know that


Therefore solving to find V, we have:



For definition we know that the Time to complete are revolution is given by



