Answer:
To find the acceleration of the object we have to apply Newton second law of motion that is F = mass × acceleration.
Explanation:
Given ,
F = 130N
M = 24kg
A = ?
F = m× a
then ,
130N = 24kg ×a
a = 130/24 = 5 m/s.
<span>First, she should put the sample in a test tube and place it in a centrifuge. This would cause the red blood cells to move to the bottom because of their higher density. Next, she would be able to decant the plasma and analyze it separately from the red blood cells.</span>
Here is your answer
C. towards the floor
REASON:
Using Fleming's Left hand rule we can determine the direction of force applied on a moving charged particle placed in a magnetic field.
The direction of current will be just opposite to the direction of electron(negative charge) because current moves from positive to negative terminal whereas electron moves from negative to positive terminal.
So, direction of current- North to South
Now applying Fleming's Left hand rule we get the direction of force in downward direction, i.e. towards the floor.
HOPE IT IS USEFUL
Answer:
B
Explanation:
to see how fast she is going per second, you would have to divide the distance traveled by the seconds it took to travel the distance
Answer:
m = 1,975 m / kg
, b = 38.05 m
Explanation:
In this experiment, the elongation is plotted against the applied mass
getting a straight line
y = m x + b
where b would be the initial length of spring let's calculate the slope for which we use two well separated points
m = (56.3 -48.4) / (8 - 4)
m = 1,975 m / kg
the equation remains
y = 1,975 x + b
for x = 2 kg y = 42.0 m
we substitute in the equation
42 = 1,975 2 + b
b = 42 - 3.95
b = 38.05 m