Answer:
This shows inertia because inertia is an object's resistance to change in motion. When the person (imma call them a she) who pulled the chair from under the guy did that, the chair was the one affected by the force of the girl, not the guy. The guy continued heading in the direction he was originally going, which was down.
At least, that's about how I would answer this question.
Answer: Wave speed may equal frequency*wavelength. Yet doubling the frequency only halves the wavelength; wave speed remains the same. To change the wave speed, the medium would have to be changed. 24. What are some simple steps I can take to protect my privacy online? Many people ... So if you double the frequency and keep the speed constant, the wavelength halves to give the same speed with the doubled frequency. 3.8k views ... The period of a note is 0.3 seconds and the speed of sound in air is 340 m/s. So if you double the frequency and keep the speed constant, the wavelength halves to give the same speed with the doubled frequency. What is the period of a wave if the wavelength is 100m and the speed is 200 m/s? ... If you move towards a light source, the wavelength decreases.
Explanation:
Given:
(Initial velocity)u=20 m/s
At the maximum height the final velocity of the ball is 0.
Also since it is a free falling object the acceleration acting on the ball is due to gravity g.
Thus a=- 9.8 m/s^2
Now consider the equation
v^2-u^2= 2as
Where v is the final velocity which is measured in m/s
Where u is the initial velocity which is measured in m/s
a is the acceleration due to gravity measured in m/s^2
s is the displacement of the ball in this case it is the maximum height attained by the ball which is measured in m.
Substituting the given values in the above formula we get
0-(20x20)= 2 x- 9.8 x s
s= 400/19.6= 20.41m
Thus the maximum height attained is 20.41 m by the ball