The States of Matter are classified into solid, liquid, and gas. Among these physical states, if we are going to refer to the water molecules, the one that would possess the greatest energy is gas. If you would take the energy of gas, this would become liquid. The answer is option C.
The component of the candle burning in the surrounding has been the oxygen in the air.
The burning of candle wax and wick has been the chemical reaction. It has been based on the reaction of wick with the atmospheric oxygen, resulting in the formulation of the wax burning.
<h3>Chemical reaction of burning of wax</h3>
The wax has been vaporizes by the heat of the flame, that has been resulted by the burning. The wick has been able to react with the oxygen and form the byproducts that helps in flame burning.
The end products have been wick and oxygen as the wax has been consumed in the reaction. The air in the surrounding has oxygen as the part of the system, as it has been involved in the reaction.
Learn more about candle burning, here:
brainly.com/question/25955977
C6H12O + 6OC2 + 6H2O + energy
<span>11.3 kPa
The ideal gas law is
PV = nRT
where
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant (8.3144598 L*kPa/(K*mol) )
T = Absolute temperature
We have everything except moles and volume. But we can calculate moles by starting with the atomic weight of argon and neon.
Atomic weight argon = 39.948
Atomic weight neon = 20.1797
Moles Ar = 1.00 g / 39.948 g/mol = 0.025032542 mol
Moles Ne = 0.500 g / 20.1797 g/mol = 0.024777375 mol
Total moles gas particles = 0.025032542 mol + 0.024777375 mol = 0.049809918 mol
Now take the ideal gas equation and solve for P, then substitute known values and solve.
PV = nRT
P = nRT/V
P = 0.049809918 mol * 8.3144598 L*kPa/(K*mol) * 275 K/5.00 L
P = 113.8892033 L*kPa / 5.00 L
P = 22.77784066 kPa
Now let's determine the percent of pressure provided by neon by calculating the percentage of neon atoms. Divide the number of moles of neon by the total number of moles.
0.024777375 mol / 0.049809918 mol = 0.497438592
Now multiply by the pressure
0.497438592 * 22.77784066 kPa = 11.33057699 kPa
Round the result to 3 significant figures, giving 11.3 kPa</span>