The moles of gas in the bottle has been 0.021 mol.
The ideal gas has been given as the gas where there has been negligible amount of interatomic collisions. The ideal gas equation has been given as:

<h3>Computation for the moles of gas</h3>
The gi<em>ve</em>n gas has standard pressure, 
The volume of the gas has been, 
The temperature of the gas has been, 
Substituting the values for the moles of gas, <em>n:</em>
<em />
<em />
The moles of gas in the bottle has been 0.021 mol.
Learn more about ideal gas, here:
brainly.com/question/8711877
Answer:
2.25×10¯³ mm.
Explanation:
From the question given above, we obtained the following information:
Diameter in micrometer = 2.25 μm
Diameter in millimetre (mm) =?
Next we shall convert 2.25 μm to metre (m). This can be obtained as follow:
1 μm = 1×10¯⁶ m
Therefore,
2.25 μm = 2.25 μm / 1 μm × 1×10¯⁶ m
2.25 μm = 2.25×10¯⁶ m
Finally, we shall convert 2.25×10¯⁶ m to millimetre (mm) as follow:
1 m = 1000 mm
Therefore,
2.25×10¯⁶ m = 2.25×10¯⁶ m /1 m × 1000 mm
2.25×10¯⁶ m = 2.25×10¯³ mm
Therefore, 2.25 μm is equivalent to 2.25×10¯³ mm.
<span>chemicals reacting are written on the left, what is formed is written on the right after the = sign
eg Copper + oxygen = copper oxide.
Hope this helps , mark as brainliest and say thanks THANKS..</span>
D. Sodium hydroxide aka naOH
<span>Answer is </span>(3)
- Sodium Nitrate.<span>
</span>Normally ionic bonds can be seen between
metals and non-metals while covalent
bonds present between
non-metals. Another thing that determines the bond nature is electronegativity
value of the atoms.
If the electronegativity difference
is high, then that bond tends to be an ionic bond.<span>
</span><span>Sodium nitrate consists of </span>Na⁺<span> and </span>NO₃⁻ ions. Hence, the bond
between Na⁺ and NO₃⁻<span> is an </span>ionic
bond. <span><span>
NO</span>₃⁻ </span><span>is made from </span>N <span>and </span>O<span>. Both are </span>non-metallic
atoms. <span>The </span>electronegativities <span>of </span>N <span>and </span>O <span>are </span>3.0 <span>and </span>3.5 <span>respectively. Hence, there is </span>no
big difference between
electronegativity values (3.5 - 3.0 = 0.5<span>). Hence, the bond
between N and O is a </span><span>covalent
bond. </span>