Answer:
1.9 L
Explanation:
Step 1: Given data
- Initial number of moles of air (n₁): 4.0 mol
- Initial volume of the balloon (V₁): 2.5 L
- Final number of moles of air (n₂): 3.0 mol
- Final volume of the balloon (V₂): ?
Step 2: Calculate the final volume of the balloon
According to Avogadro's law, the volume of an ideal gas is directly proportional to the number of moles. We can calculate the final volume of the balloon using the following expression.
V₁ / n₁ = V₂ / n₂
V₂ = V₁ × n₂ / n₁
V₂ = 2.5 L × 3.0 mol / 4.0 mol
V₂ = 1.9 L
1/4 Ao = Ao * ( 1/2)^(t/106)
t = 212
subtract 4.6 billion years
<span>d)</span>
Answer:
friend according to the question the answer is +3 ....
Given what we know, we can confirm that if further increases in substrate concentration do not result in further increases in reaction rate, then an enzyme is likely saturated.
<h3>What does it mean for an enzyme to be saturated?</h3>
Enzymes work by binding to the substrate in specific zones of the enzyme. The zones are known as the active sites on enzymes. Since enzymes have a limited amount of these zones, once they are all bonded to a substrate, we can say that it is saturated.
Therefore, the saturation of enzymes allows us to explain how further increases in substrate concentration do not result in further increases in reaction rate.
To learn more about enzymes visit:
brainly.com/question/24811456?referrer=searchResults
Answer:
Don't post any question if isn't related to the topic or to your homework or assignment.
Explanation: