Solubility data of a certain solute with a certain solvent is empirical. There are constant values for this at varying temperatures. For KCl in water at 25°C, the solubility is 35.7 g/100 mL of water. When you compare this with the solubility data of KCl with ethanol, this means that KCl is more soluble in water than in ethanol. This is true because KCl is an ionic salt which is very soluble in water.
Rutherford's model shows that an atom is mostly empty space, with electrons orbiting a fixed, positively charged nucleus in set, predictable paths. ... It was after this that Rutherford began developing his model of the atom.
It is called permafrost :)
Answer:

Explanation:
Hello,
In this case, we can first compute the heat required for such temperature increase, considering the molar heat capacity of water (75.38 J/mol°C):

Afterwards, the mass of ice that can be melted is computed by:

So we solve for moles with the proper units handling:

Finally, with the molar mass of water we compute the mass:

Best regards.
Density as you say Saturn as you say Jupiter as you say big stuff chemistry mike h20 is water