Defenition of skeletal muscles: a muscle that is connected to the skeleton to form part of the mechanical system that moves the limbs and other parts of the body.
{GOOGLE~SEARCHED}
The density would increase because you still have the same amount of weight, but it is just packed more tightly in a smaller object.
Answer:
force for start moving is 7.49 N
force for moving constant velocity 2.25 N
Explanation:
given data
mass = 7.65 kg
kinetic coefficient of friction = 0.030
static coefficient of friction = 0.10
solution
we get here first weight of block of ice that is
weight of block of ice = mass × g
weight of block of ice = 7.65 × 9.8 = 74.97 N
so here Ff = Fa
so for force for start moving is
Fa = weight × static coefficient of friction
Fa = 74.97 × 0.10
Fa = 7.49 N
and
force for moving constant velocity is
Fa = weight × kinetic coefficient of friction
Fa = 74.97 × 0.030
Fa = 2.25 N
Answer:
C = 3.77*10⁻¹⁰ F = 377 pF
Q = 1.13*10⁻⁵ C
Explanation:
Given
D = 8.0 cm = 0.08 m
d = 0.95 cm = 0.95*10⁻² m
k = 80.4 (dielectric constant of the milk)
V = 30000 V
C = ?
Q = ?
We can get the capacitance of the system applying the formula
C = k*ε₀*A / d
where
ε₀ = 8.854*10⁻¹² F/m
and A = π*D²/4 = π*(0.08 m)²/4
⇒ A = 0.00502655 m²
then
C = (80.4)*(8.854*10⁻¹² F/m)*(0.00502655 m²) / (0.95*10⁻² m)
⇒ C = 3.77*10⁻¹⁰ F = 377 pF
Now, we use the following equation in order to obtain the charge on each plate when they are fully charged
Q = C*V
⇒ Q = (3.77*10⁻¹⁰ F)*(30000 V)
⇒ Q = 1.13*10⁻⁵ C
C. They don't have free electrons.
The only things capable of conducting a charge are things that have charged particles in them that are free to move, e.g free electrons, free positions, or dissociated ions