Answer:
Earth would continue moving by uniform motion, with constant velocity, in a straight line
Explanation:
The question can be answered by using Newton's first law of motion, also known as law of inertia, which states that:
"an object keeps its state of rest or of uniform motion in a straight line unless acted upon by an external net force different from zero"
This means that if there are no forces acting on an object, the object stays at rest (if it was not moving previously) or it continues moving with same velocity (if it was already moving) in a straight line.
In this problem, the Earth is initially moving around the Sun, with a certain tangential velocity v. When the Sun disappears, the force of gravity that was keeping the Earth in circular motion disappears too: therefore, there are no more forces acting on the Earth, and so by the 1st law of Newton, the Earth will continue moving with same velocity v in a straight line.
Answer:
see explanations below
Explanation:
At the point when the car leaves the track, the reaction on the road is zero, meaning that the centrifugal force equals the gravitation force, namely
mv^2/r = mg
Solve for v in SI units
v^2 = gr = 9.81 m/s^2 * 14.2 m = 139.302 m^2/s^2
v = sqrt(139.302) = 11.8 m/s
Answer: at 11.8 m/s (26.4 mph) car will leave the track.
Answer:
The correct answer would be C, certain display rules are more appropriate than others.
Explanation:
I hope this helps you:)
Orbital resonances.
Hope this helps!
Please give Brainliest!
The change in the Gibb's free energy per mole (G) is 1.96 J.
The given parameters:
- Density of the ice, ρ = 917 kg/m³
- Initial pressure, P₁ = 1.0 bar
- Final pressure, P₂ = 2.0 bar
- Temperature, T = - 10 C
- Mass of water = 18 g
The change in the Gibb's free energy per mole (G) is calculated as follows;

where;
V is the volume of the ice

Change in pressure;

The change in the Gibb's free energy per mole (G);

Thus, the change in the Gibb's free energy per mole (G) is 1.96 J.
Learn more about Gibb's free energy here: brainly.com/question/10012881