Answer:
I hope this helps and I'm not to late
A way the balls behave the same way is by bouncing about 1 time after throwing the balls up. A way the balls act differently is the blue ball is bouncier than all the balls, the red ball bounces about 2 times before stopping, and the green ball doesn’t really bounce except for one time.
Explanation:
you also can use paraphrase to help you reword bye bye!!
Displacement s = (u+v)*t/2 (t refers to delta time)
= (0.45 + 2.7)*6/2
= 3.15*3
= 9.45 m
Understanding Newtons second law that everything has an equal and opposite reaction. The reaction force from a balloons air being pushed out is the preasurized air it had to push out into the open air.
Answer:

Explanation:
the variations in riser height or tread depth should not be grater than
that is equal to 9.5 mm but the maximum riser height should be the
but variation in riser height should not exceed to
. The minimum riser height should be 7 inches which is equal to the 178 mm
Answer:
A. The bomb will take <em>17.5 seconds </em>to hit the ground
B. The bomb will land <em>12040 meters </em>on the ground ahead from where they released it
Explanation:
Maverick and Goose are flying at an initial height of
, and their speed is v=688 m/s
When they release the bomb, it will initially have the same height and speed as the plane. Then it will describe a free fall horizontal movement
The equation for the height y with respect to ground in a horizontal movement (no friction) is
[1]
With g equal to the acceleration of gravity of our planet and t the time measured with respect to the moment the bomb was released
The height will be zero when the bomb lands on ground, so if we set y=0 we can find the flight time
The range (horizontal displacement) of the bomb x is
[2]
Since the bomb won't have any friction, its horizontal component of the speed won't change. We need to find t from the equation [1] and replace it in equation [2]:
Setting y=0 and isolating t we get

Since we have 


Replacing in [2]


A. The bomb will take 17.5 seconds to hit the ground
B. The bomb will land 12040 meters on the ground ahead from where they released it