The mass of piece of sterling silver jewelry is 33.24 g. It contains 92.5% silver Ag by mass. Since, sterling silver is an alloy of Ag-Cu thus, percentage of Cu will be:
% Cu=100-92.5=7.5%
Thus, mass of copper will be:

Molar mass of Cu is 63.546 g/mol, thus, number of moles of Cu can be calculated as follows:

Here, m is mass and M is molar mass.
Putting the values,

Now, in 1 mole of Cu there are
thus, in 0.03923 mol, number of Cu atoms will be:

Thus, number of atoms of Cu will be
.
Answer:
The mass of tin is 164 grams
Explanation:
Step 1: Data given
Specific heat heat of tin = 0.222 J/g°C
The initial temeprature of tin = 80.0 °C
Mass of water = 100.0 grams
The specific heat of water = 4.184 J/g°C
Initial temperature = 30.0 °C
The final temperature = 34.0 °C
Step 2: Calculate the mass of tin
Heat lost = heat gained
Qlost = -Qgained
Qtin = -Qwater
Q = m*c*ΔT
m(tin)*c(tin)*ΔT(tin) = -m(water)*c(water)*ΔT(water)
⇒with m(tin) = the mass of tin = TO BE DETERMINED
⇒with c(tin) = the specific heat of tin = 0.222J/g°C
⇒with ΔT(tin) = the change of temperature of tin = T2 - T1 = 34.0°C - 80.0°C = -46.0°C
⇒with m(water) = the mass of water = 100.0 grams
⇒with c(water) = the specific heat of water = 4.184 J/g°C
⇒with ΔT(water) = the change of temperature of water = T2 - T1 = 34.0° C - 30.0 °C = 4.0 °C
m(tin) * 0.222 J/g°C * -46.0 °C = -100.0g* 4.184 J/g°C * 4.0 °C
m(tin) = 163.9 grams ≈ 164 grams
The mass of tin is 164 grams
A calorie is equal to 4.18 joules and 1000 calories is equal to 1 Calorie. A Calorie with a capital "c" is what food is measured in.
Answer:
Peer review is a quality control measure for medical research. It
is a process in which professionals review each other's work to
make sure that it is accurate, relevant, and significant. Scientific
researchers aim to improve medical knowledge and find better
ways to treat disease.
if I am right mark the answer as brainliest
Answer:

Explanation:
To solve this problem, we can use the Combined Gas Laws:

Data:
p₁ = 1.7 kPa; V₁ = 7.5 m³; T₁ = -10 °C
p₂ = ?; V₂ = 3.8 m³; T₂ = 200 K
Calculations:
(a) Convert temperature to kelvins
T₁ = (-10 + 273.15) K = 263.15 K
(b) Calculate the pressure
