Answer:
E = 0 r <R₁
Explanation:
If we use Gauss's law
Ф = ∫ E. dA =
/ ε₀
in this case the charge is distributed throughout the spherical shell and as we are asked for the field for a radius smaller than the radius of the spherical shell, therefore, THERE ARE NO CHARGES INSIDE this surface.
Consequently by Gauss's law the electric field is ZERO
E = 0 r <R₁
Answer:
Almost all machines require energy to offset the effects of gravity, friction, and air/wind resistance. Thus, no machine can continually operate at 100 percent efficiency.
Answer
given,
before collision
mass of car A = m_a = 1300 kg
velocity of car A = v_a = 35 mph
mass of car B = m_b= 1000 kg
velocity of car B = v_b = 25 mph
after collision
V_a = 30 mph
V_b = 31.5 mph
Initial momentum



final momentum



here initial momentum is equal to the final momentum of the car.
hence, momentum is conserved in the collision.
Answer:
It has a mass of 40 kg.
Explanation:
Because Force = mass x Acceleration or F = m a, we could say that the mass is force/acceleration which in your case is 2,400/60 which equals 40 kg.
Answer:
0.0334N
Explanation:
Given parameters:
M1 = 5 x 10⁶kg
M2 = 1 x 10⁶kg
Distance = 100m
Unknown:
Gravitational force = ?
Solution:
To solve this problem, we use the Newton's law of universal gravitation.
Fg =
G is the universal gravitation constant
m is the mass
r is the distance
Fg =
= 0.0334N