The dish that has to be cooked to at least 145°f is scrambled eggs. Option C is correct.
<h3>What is temperature?</h3>
Temperature directs to the hotness or coldness of a body. It is denoted by T.Measured mainly in the °C.
For good food safety beef, pig and eggs must be cooked at a temperature of 145°f. A minimum of 15 seconds must pass with the temperature held steady.
The temperature range in which the majority of bacteria thrive and multiply quickly is known as the temperature danger zone.
To keep away the eggs from the bacteria they must be cooked to at least 145°f. Scrambled eggs are the food that must be cooked to at least 145°f.
Hence, option C is correct.
To learn more about the temperature refer to the link;
brainly.com/question/7510619
#SPJ1
Answer:
v = 42.92 m/s
Explanation:
Given,
initial speed of the ball, v = 11 m/s
time taken to hit the ground = 5.5 m/s
velocity of the ball just before it hit the ground, v = ?
time taken by the ball to reach the maximum height
using equation of motion
v = u + at
final velocity = 0 m/s
0 = 11 - 9.8 t
t = 1.12 s.
time taken by the ball to reach the water from the maximum height
t' - 5.5 -1.12 = 4.38 s
using equation of motion for the calculation of speed just before it hit the water.
v = u + a t
v = 0 + 9.8 x 4.38
v = 42.92 m/s
Velocity of the ball just before it reaches the water is equal to v = 42.92 m/s
Answer:
= ( ρ_fluid g A) y
Explanation:
This exercise can be solved in two parts, the first finding the equilibrium force and the second finding the oscillating force
for the first part, let's write Newton's equilibrium equation
B₀ - W = 0
B₀ = W
ρ_fluid g V_fluid = W
the volume of the fluid is the area of the cube times the height it is submerged
V_fluid = A y
For the second part, the body introduces a quantity and below this equilibrium point, the equation is
B - W = m a
ρ_fluid g A (y₀ + y) - W = m a
ρ_fluid g A y + (ρ_fluid g A y₀ -W) = m a
ρ_fluid g A y + (B₀-W) = ma
the part in parentheses is zero since it is the force when it is in equilibrium
ρ_fluid g A y = m a
this equation the net force is
= ( ρ_fluid g A) y
we can see that this force varies linearly the distance and measured from the equilibrium position
The is true because I said so
Answer:
a) If we apply pressure to a fluid in a sealed container, the pressure will be felt undiminished at every point in the fluid and on the walls of the container.
Explanation:
Pascal´s Principle can be applied in the hydraulic press:
If we apply a small force (F1) on a small area piston A1, then, a pressure (P) is generated that is transmitted equally to all the particles of the liquid until it reaches a larger area piston and therefore a force (F2) can be exerted that is proportional to the area(A2) of the piston.
P=F/A
P1=P2
F1/ A1= F2/ A2
F2= F1* A2/ A1
The pressure acting on one side is transmitted to all the molecules of the liquid because the liquid is incompressible.
In an incompressible liquid, the volume and amount of mass does not vary when pressure is applied.